Search Results

1 - 3 of 3 items :

Clear All


The morphology and properties of heavily eroded soils found in chernozems in the upland landscape of the Proszowice Plateau (southern part of Poland) was presented. The issue of classification of these soils was also discussed. Taking into account the terrain context, it should have been assumed that these soils were formed as a result of strong erosion (truncation) of chernozems. These (post-chernozem) soils were relatively young, in which only the development of humus horizon can be documented. However, the accumulation of humus was hampered by constantly intense erosion processes. Evidence of the occurrence of the illuviation process as well as formation of cambic horizon is not visible macroscopically and microscopically. These soils are often classified as weakly developed soils though despite the poor development of the soil profile, they are characterized by potentially high productivity, which results both from the properties of their parent material (texture, porosity) and from their youthfulness (carbonate content both in fine earths and in nodules, high pH in whole profile). Therefore, the name proposed in Polish Soil Classification, 6th edition (‘pararędzina’) seems to be justified. These soils would be classified as Entisols according to USDA Soil Taxonomy and as Regosols according to WRB.


A study was conducted to assess the effects of a bio-fertilizer and an inorganic fertilizer on growth, yield of spinach vegetable, on four cultivated soils, representing different agro-ecological zones of Chengdu, Hunan, Xiaotangshan and Shaanxi. Three replicates soil samples mixed with bio-fertilizer 100 g per pot and nutrient solution (MgSO4, Ca(NO)2, KNO3) 633 ml based on container volume. Spinach seeded directly ten per pot, thinned to five watered to plant water requirement until maturity. RCBD of three replication used, data for growth, yield and other agronomic characters and soil physicochemical properties evaluated. Soil results showed substantial differences in physicochemical properties from the four agro-ecological zones (Ferrod Arenosol, Entisol, Aridisol and Vertisol). Plant emergence percent were Xiaotangshan (74.8%), Chengdu (74.5%), Hunan (72.4%) and Shaanxi (70.7%), plant height at six week, Xiaotangshan (17.8 cm), Hunan (17.1 cm), Shaanxi (16.8 cm) and Chengdu (16.1 cm) the least, number of leaves at six weeks were Xiaotangshan (21), Hunan (19) and (16) Shaanxi, leaf area Hunan (89.5 cm2), Shaanxi (83.7 cm2), Chengdu (79.4 cm2) and Xiaotangshan (78.1 cm2), dry biomass of 4.88, 4.35, 3.83 and 3.03 g obtained for Hunan, Chengdu, Shaanxi and Xiaotangshan, respectively. Percentage plant emergence based on soil layers were 0-25 cm (75.8%), 25-50 cm (75.3%), 50-75 cm (71.6%) and 75-100 cm (69.6%), respectively; highest plant emergence percentage were obtained from top soil layer of Hunan, treated with biofertilizer. Substantial differences were observed for plant height, biomass and other agronomic characters in all the soils. The results show that Hunan soil is the most suitable for cultivation of spinach under biofertilizer treatment, compared to other types. The study underpins the importance soil types and fertilizer evaluation for a sustainable vegetable production in China.

of the Drava River is apparently flat, the physical properties of soil are controlled by ridge-and-swale topography (Hickin 1974; Leclerc and Hickin 1997; Gibling and Rust 2009 ). According to our field observations and satellite images, soil surface properties have changed at a scale of a few tens of metres. Crop growth and yield varies in bands of a 10- to 30-metre width, which corresponds with the horizontal fluviomorphological structures of point bars ( Lieb and Sulzer 2019 ). The mosaic pattern of floodplain Entisols (WRB: Fluvisols) involves extreme water