Search Results

1 - 10 of 70 items :

  • "Electrospinning" x
Clear All

poly(ethylene terephthalate) (PET)/poly(vinyl alcohol) (PVA) composite fibrous mats with improved mechanical properties prepared via electrospinning process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436. (2013) 417–424. [7] Awaja F., Pavel D.: Recycling of PET. European Polymer Journal, 41/7. (2005) 1453–1477. [8] Rajabinejad H., Khajavi R., Rashidi A., Mansouri N., Yazdanshenas M. E.: Recycling of used bottle grade poly ethyleneterephthalate

References [1] Taylor G., The Force Exerted by an Electric Field on a Long Cylindrical Conductor, Proceedings of the Royal Society A, 291 (1425): 145–158. [2] Gilbert W., On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth: book. London, Peter Short, 1600. [3] Tucker N., et al. The history of the science and technology of electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics, 63-73, 2012, 7(July – 2012). [4] Andrady L., A. Science and technology of polymer nanofibers:book. Usa, A John Wiley & Sons, Inc, 2008. [5] Strutt J

wytwarzania włókien o rozmiarach mikrometrycznych i podwyższonych właściwościach wytrzymałościowych z poli(kwasu mlekowego) oraz jego kopolimerów metodą z roztworu na mokro, Opis patentowy PL P-399819, 2012 [34] Kumar C.S.S.R., Nanotechnologies for the Life Sciences, Vol. 9, Tissue, Cell and Organ Engineering, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006, ISBN: 3-527-31389-3 [35] Subbiah T., Bhat G.S., Tock R.W., Parameswaran S., Ramkumar S.S., Electrospinning of nanofibers, Journal of Applied Polymer Science, Vol. 96, pp. 557–569, 2005 [36] Garg K., Bowlin G

References [1] Huang, Z. M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S. (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223-2253 [2] Ramakrishna, S., Fujihara, K., Teo, W., Lim, T. C., Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers (World Scientific Pub. Co. Inc., Singapore) Chapter 1 p 7 [3] Nayak, R., Padhye, R., Kyratzis, I., Truong, Y. B., Arnold, L. (2012). Recent advances in nanofibre fabrication techniques. Textile Research Journal, 82(2), 129

, Caterson EJ, Tuan RS and Ko FK. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 60: 613-621. [5]Yoshimoto H, Shin YM, Terai H and Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. BIOMATERIALS 2003; 24: 2077-2082. [6]Shin M, Yoshimoto H and Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. TISSUE ENGINEERING 2004; 10: 33-41. [7]Pillai, C. K. S., Paul W and Sharma CP

6.0. References [1] Q.T. Ain, and J.H. He, “On Two-Scale Dimension and Its Applications”, Thermal Science, Vol. 23, Pp. 1707–12, 2019. [2] J. He, and Q.T. Ain, “New Promises and Future From Two-Scale Thermodynamics to Fractal Variational Principle”, Vol. 24, Pp. 659–81, 2020. [3] A.H. Hekmati, A. Rashidi, R. Ghazisaeidi, and J.Y. Drean, “Effect of needle length, electrospinning distance, and solution concentration on morphological properties of polyamide-6 electrospun nanowebs”, Textile Research Journal, Vol. 83, Pp. 1452–66, 2013. [4] A. Abbasi, M.M. Nasef, M

References [1] Bhardwaj, N., Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances, 28, 325-347. [2] Huang, Z. M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S. (2003). A review on polymer nanofibres by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223-2253. [3] Kleivaite, V., Milašius, R. (2018). Electrospinning - 100 Years of investigations and still open questions of web structure estimation. AUTEX Research Journal, 4(18), 398-404. [4] Stijnman, A. C., Bodnar

, Polymer, 46, 4799 (2005). 26. G. T. Kim, J. S. Lee, J. H. Shin, Y. C. Ahn, Y. J. Hwang, H. S. Shin, J. K. Lee and C. M. Sung, Korean journal of Chemical Engineering, 22, 783 (2005). 27. H. Fong, I. Chun and D. H. Reneker, Polymer, 40, 4585 (1999). 28. S. Talwar, J. Hinestroza, B. Pourdeyhimi and S. A. Khan, Macromolecules, 41, 4275 (2008). 29. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim and Z. Ma,” An Introduction to Electrospinning and Nanofibers”, pp 92, 96, 98, World Scientific Publishing Company, Singapore, 2005. 30. M. M. Hohman, M. Shin, G. Rutledge and M. P

Electrospinning. Macromol. Mater. Engine. 299(5), 540–551. DOI: 10.1002/mame.201300148. 4. Hunley, M.T. & Pötschke, P. et al. (2009). Melt Dispersion and Electrospinning of Non-Functionalized Multiwalled Carbon Nanotubes in Thermoplastic Polyurethane. Macromol. Rapid Commun. 30(24), 2102–2106. DOI: 10.1002/marc.200900393. 5. Inagaki, M. & Yang, Y. et al. (2012). Carbon Nanofibers Prepared via Electrospinning. Adv. Mater. 24(19), 2547–2566. DOI: 10.1002/adma.201104940. 6. Karimi, L. & Zohoori, S. et al. (2014). Multi-wall carbon nanotubes and nano titanium dioxide coated on


Because of special characteristics of vanadate compound, such as its sustainability, magneticity, high selectivity in reactions and catalytic character, this study aimed to preparation and analyzing novel ceramic iron vanadate (FeVO4) nanofibers. The ceramic nanofibers of iron vanadate were made by the combination of sol-gel and electrospinning methods. First, polyvinyl alcohol (PVA), as a matrix polymer, was mixed separately with ammonium metavanadate (NH4VO3) and iron (III) nitrate (Fe(NO3)3). As a result, the spinnable polymeric gel was obtained from the controlled mixture of these two precursors of ceramic material. Electrospinning of PVA/iron (III) nitrate/ammonium vanadate solution was done using an Electroris setup that enabled preparation of polymeric template nanofiber. Finally, iron vanadate nanofiber was obtained by calcination of polymer nanofiber at controlled temperature. The products were characterized with scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and Brunauer-Emmett-Teller (BET) surface area analysis.