Search Results

1 - 5 of 5 items :

  • "Coryphaena" x
Clear All

Lernaeocera, Peniculus and Lernaea, bin Beitrag zur Naturgeschichte der Lernaeen, Schriften der Gesellschaft zur Beförderung der gesammten Naturwissenschaften zu Marburg, Marburg und Leipzig, 1868, II, 32. (in German) 17. Delamare Deboutteville C. and Nunes-Ruivo L., 1951 – Existence de “formes biologiques” chez Peniculus fistula (Rudolphi) (Copepoda), Vie et Milieu , 2, 448-458. (in French) 18. Dyer W. G., Bunkley-Williams L. and Williams E. H., 1997 – Parasites of the Dolphin fish (Coryphaena hippurus) in Puerto Rico, Journal of Helminthological Society of Washington

Abstract

The genetic identification and distribution of Anisakis larvae in Indonesia is described. 110 Auxis rochei rochei and 45 Decapterus russellii were sampled from fish markets in North (Anturan) and South (Kedonganan) Bali. Nematode larvae from A. rochei rochei, Caesio cuning and Epinephelus areolatus from Kedonganan and from Coryphaena hippurus from Pelabuhan Ratu, South Java, were identified using sequence analysis of the internal transcribed spacers (ITS-1, ITS-2) and 5.8S region of rDNA. The larvae belonged to Anisakis typica with an identical sequence to this species from the spinner dolphin (Stenella longirostris) from Brazil, and to 2 further genotypes that differed from that sequence by 0.24–0.47 %. A. typica occurred in the migratory A. rochei rochei and C. hippurus, while Anisakis sp. 1 and 2 were isolated from the same fish species and the non-migratory C. cuning and E. areolatus. The latter genotype is distinguishable by 4 positions in the ITS-1 region (1.1 %), a genetic distance that indicates the presence of an Indonesian A. typica sibling species. The musculature infection in A. rochei rochei was low (2.5 %), indicating no major risk for the fish consumers. The much higher A. typica infection of fish intermediate hosts in the northern Bali coast is suggested to be dependent on the large dolphin population (nematode final hosts) in the waters off Lovina Beach (North Bali).

( Coryphaena hippurus ) – South Pac. Stud. 22: 53-64. Nikonov A.A., Butler J.M., Field K.E., Caprio J., Maruska K.P. 2017 – Reproductive and metabolic state differences in olfactory responses to amino acids in a mouth brooding African cichlid fish – J. Exp. Biol. 220: 2980-2992. Ojha P.P., Kapoor A.S. 1972 – Functional anatomy of nose in the teleost Wallago attu Bl. and Schn. – Arch. Biol. 83: 105-116. Ojha P.P., Kapoor A.S. 1973 – Structure and function of the olfactory apparatus in the freshwater carp, Labeo rohita (Ham. Buch.) – J. Morphol. 140: 77-85. Pashchenko N

, J., Menesatti, P., Lombarte, A., Ciccotti, E. (2011): Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel ( Anguilla anguilla , L.) local stocks. Journal of Experimental Marine Biology and Ecology, 397, 1, 1-7. Cruz, A., Lombarte, A. (2004): Otolith size and its relationship with colour pattern and sound production. Journal of Fish Biology, 65, 6, 1512-1525. Duarte-Neto, P., Lessa, R., Stosic, B., Morize, E. (2008): The use of sagittal otoliths in discriminating stocks of common dolphinfish ( Coryphaena hippurus

(Copepoda: Pennelidae) Parasitic on Coryphaena hippurus Linnaeus, 1758 (Teleostei: Coryphaenidae), Reviews in Fisheries Science, 16, 4, 445-448. 57. Öktener A., Alaş A. and Solak K., 2008b - The Occurence of Clavellotis strumosa (Brian, 1906) (Copepoda; Siphonostomatoida; Lernaeopodidae) in Turkey, Crustaceana, 81, 5, 631-636. 58. Öktener A., Ali H. and Alaş A., 2008c - Ergasilus mosulensis Rahemo, 1982 (Ergasilidae) on Chalcalburnus mossulensis Heckel, 1843 (Cyprinidae) from Turkey, Bulletin of the European Association Fish Pathologists, 28, 5, 193-197. 59. Öktener A