Search Results

1 - 10 of 237 items :

  • "Antifungal activity" x
Clear All

D. A novel broad-spectrum triazole antifungal, pasaconazozle. Chin J New Drugs 2007;16:1226-31. 12. Barchiesi F, Schimizzi AM, Najvar LK, Bocanegra R, Caselli F, Di Cesare S, et al. Interactions of posaconazole and flucytosine against Cryptococcus neoformans. Antimicrob Agents Chemother 2001;45:1355-9. 13. Groll AH, Walsh TJ. Antifungal efficacy and pharmacodynamics of posaconazole in experimental models of invasive fungal infections. Mycoses 2006;49:S7-16. 14. Petraitiene R, Petraitis V, Groll AH, Sein T, Piscitelli S, Candelario M, et al. Antifungal activity and

activities of essential oils of seven Ocimum taxa. Food Chemistry 119: 196-201. [DOI:10.1016/j.foodchem.2009.06.010] Fandohan P., Gbenou J., Gnonlonfin B., Hell K., Marasas W. 2004. Effect of essential oils on the growth of Fusarium verticillioides and fumonisin production in corn. J. Agr. Food Chem. 52(22): 6824-6829. Feng W., Zheng X. 2007. Essential oils to control Alternaria alternata in vitro and in vivo. Food Control 18: 1126-1130. [DOI:10.1016/j.foodcont.2006.05.017] Guynot M.E., Ramos A.J., Seto L., Purroy P., Sanchis V., Marin S. 2003. Antifungal activity of

.C., Luiz, C., Maraschin, M. & Di Piero, R.M. (2016). Effi cacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits. Int. J. Food Microbiol. 221, 54-60. DOI: 10.1016/j.ijfoodmicro.2016.01.007. 5. da Rocha, M.E.B., Freire, F.C.O., Maia, F.E.F., Guedes, M.I.F. & Rondina, D. (2014). Mycotoxins and their effects on human and animal health. Food Control 36(1), 159-165. DOI: 10.1016/j.foodcont.2013.08.021. 6. da Rocha Neto, A.C., Maraschin, M. & Di Piero, R.M. (2015). Antifungal activity of salicylic acid against Penicillium expansum and its

radical cation decolorization assay, Free Radic. Biol. Med., 1999 , 26 , 1231. [27]. Özyürek, M.; Güçlü, K.; Apak, R., The main andmodified CUPRAC methods of antioxidant measurement, TrAC-Trends Anal. Chem., 2011 , 30 , 652–664. [28]. Pitt,J.I.; HockingaD., Fungi and food spoilage. Springer, London & New York, 1999 , 501. [29]. Gakuubi, M.M.; Maina, A.W.; Wagacha,J.M.,Antifungal Activity of Essential Oil of Eucalyptus camaldulensis Dehnh. against Selected Fusarium spp., International Journal of Microbiology, 2017, 2017 , 7. [30]. Kordali, S.; Cakir, A.; Zengin

protection, Pest Technology, 2007 , 1 , 47-52. [11].Vega, F.E.; Goettel, M.S.; Blackwell, M.; Chandler, D.; Jackson, M.A.; Keller, S.; Koike, M.; Maniania, N.K.; Monzon, A.; Ownley, B.H.; Pell, J.K.; Rangel, D.E.N.; Roy, H.E, Fungal entomopathogens: new insights on their ecology, Fungal Ecology , 2009 , 2 , 149-159. [12].Yan, D.H.; Song, X.; Li, H.; Luo, T.; Dou, G.; Strobel, G, Antifungal Activities of Volatile Secondary Metabolites of Four Diaporthe Strains Isolated from Catharanthus roseus. Journal of Fungi, 2018, 4 , 65. [13].Aly, A.H.; Debbab, A.; Proksch, P

://www.osti.gov/bridge Gelover, S., Gómez, L. A., Reyes, K. & Leal, M. T. (2006). A practical demonstration of water disinfection using TiO 2 films and sunlight. Water Res. 40(17), 3274-3280. DOI: 10.1016/j.waters.2006.07.006. Kim, B., Kim, D., Cho, D. & Cho, S. (2003). Bacterial effect of TiO 2 photocatalyst on selected food borne pathogenic bacteria. Chemosphere 52(1), 71-77. DOI: 10.1016/S0045-6535(03)00051-1. Maneerat, C. & Hayata, Y. (2006). Antifungal activity of TiO 2 photocatalysis against Penicillium expensum in vitro and in fruit test. Intern. J. Food Microbiol. 107(2), 99

. Horvat, N. Kopjar, A. Vučemilović, D. Kremer, S. Tomić and I. Kosalec, Hydroxytyrosol expresses antifungal activity in vitro, Curr. Drug Targets. 14 (2013) 992-998. 20. IOOC - International Olive Oil Council COI/T.20/Doc.29 - Determination of biophenols in olive oils by HPLC, 2009; http://www.internationaloliveoil.org/web/aa-ingles/corp/AreasActivitie/economics/ Areas Activitie.html; access date May 15, 2009. 21. EUCAST DEFINITIVE DOCUMENT EDef 7.2. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts, March

strains showing antifungal activity against various plant pathogens including Fusarium ( 8 , 9 , 10 ). Results from literature reported that biocide formulations with antimicrobial metabolic components extracted from Trichoderma viride alone or from combinations with other fungi were efficient in reducing disease incidence and activating defense response of tomato plants against pathogens ( 11 ). As shown in images of optic microscopy captured in interaction zone between the strains of Trichoderma and Fusarium from dual culture, the metabolites of antagonist

pyrimidines, Curr. Sci.   90 (2006) 793-803. O. A. Fathalla, S. M. Awad and M. S. Mohamed, Synthesis of new 2-thiouracil-5-sulphonamide derivatives with antibacterial and antifungal activity, Arch. Pharm. Res.   28 (2005) 1205-1212; DOI: 10.1007/bf02978199. O. A. Fathalla, W. A. Zaghary, H. H. Radwan, S. A. Awad, and M. S. Mohamed, Synthesis of new 2-thiouracil-5-sulphonamide derivatives with expected biological activity, Arch. Pharm. Res.   25 (2002) 258-269; DOI: 10.1007 bf 0 2976623. Y. Ding, J. Girardet, K. L. Smith, G. L. Prigaro, J. Z. Wu and, N. Yao, Parallel

3

Starting from 2-methyl-4-nitro-imidazole, new 5-(2-methyl- 4-nitro-1-imidazomethyl)-1,3,4-oxadiazole-2-thione () was synthesized and was subjected to Mannich reaction with appropriate amines to yield a new series of 3-substituted aminomethyl-5-(2-methyl-4-nitro-1-imidazomethyl)- 1,3,4-oxadiazole-2-thiones (4a-j). The structure of the title compounds was elucidated by elemental analysis and spectral data. The newly synthesized Mannich bases were screened for their antibacterial and antifungal activity. Many of these compounds exhibited potent antifungal activity.