Search Results

1 - 1 of 1 items :

  • "Anisops sp" x
Clear All


The distribution of the mosquito larvae in the breeding habitats varies at the spatial scale depending on the availability of the resources and the predators. This proposition was assessed through the observation of the spatial distribution of Culex larvae (Culex tritaeniorhynchus) in artificially constructed rice field habitats. Using a binomial generalized linear model with logit link, the disparity in the abundance of the larvae was evaluated to justify the effects of light (light vs shade), vertical (surface vs bottom), and horizontal (wall vs center) distribution as explanatory variables. Under light availability, the spatial occupancy of the mosquito larvae was higher in the center than in the walls of the mesocosms. However, the larval orientation was higher on the surface than at the bottom of the mesocosms in all instances. In comparison to open spaces, the larval aggregation was higher in the presence of the floating vegetations like Azolla and Lemna, indicating that the habitat heterogeneity of the mesocosms influenced the distribution of the mosquito larvae in the available spaces. A reduction in the larval aggregation pattern in the spaces was observed in the presence of the predator (Anisops sp.) reflecting the possible evasion tactics of the mosquito larvae. The observations suggest that the mosquito larvae may utilize the vegetation in the rice field habitats quite effectively and occupy empty spaces of predators. The results may be considered as a prototype of the prospective localization of the mosquito larvae in the rice fields and help to frame the strategies of spraying the biopesticides to achieve optimal efficacy in mosquito regulation.