Search Results

1 - 10 of 125 items :

  • "Additive manufacturing" x
Clear All

References [1] ASTM International, “F2792-12a - Standard Terminology for Additive Manufacturing Technologies,” Rapid Manuf. Assoc. , pp. 10–12, 2013. [2] KELLENS, K., BAUMERS, M., GUTOWSKI, T. G., FLANAGAN, W., LIFSET, R., DUFLOU, J. R. 2017. Environmental Dimensions of Additive Manufacturing: Mapping Application Domains and Their Environmental Implications. J. Ind. Ecol. , 21 , pp. S49–S68. [3] Wohlers, Wohlers report 2017 : 3D printing and additive manufacturing state of the industry : annual worldwide progress report ., 22nd ed. FORT COLLINS, COLORADO, USA

References [1] Hussain T., McCartney D. G., Shipway P. H., Marrocco T., Corrosion Behavior of Cold Sprayed Titanium Coatings and Free Standing Deposits, J. of Thermal Spray Technology, 260, Volume 20(1-2), January 2011. [2] Cinca N., Barbosa M., Dosta S., Guilemany J.M., Study of Ti deposition onto Al alloy by cold gas spraying, Surface & Coatings Technology, 205, 2010, 1096–1102. [3] Raoelison R.N., Verdy Ch., Liao H., Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications , Materials and

References [1] Czvikovszky T., Nagy P., Gaál J.: A polimertechnika alapjai . Műegyetemi Kiadó, Budapest, 2007. [2] Gebhardt A.: Understanding Additive Manufacturing. Carl Hanser Verlag GmbH & Co. KG, München, 2011. https://doi.org/10.3139/9783446431621 [3] DebRoy T., Wei H. L., Zuback J. S. et al.: Additive manufacturing of metallic components Process, structure and properties . Progress in Materials Science, 92. (2017) 112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001 [4] Moiduddin K., Darwish S. et al.: Structural and mechanical characterization of

References [1] Frazier, W. E. (2014): Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23(6), pp. 1917–1928. [2] Wong, K.V., Hernandez, A. (2012): A review of additive manufacturing. ISRN Mechanical Engineering, 2012, pp. 1–10. [3] Merz, R. (1994): Shape deposition manufacturing (Doctoral dissertation), Retrieved from https://www.researchgate.net/publication/30873042_Shape_deposition_manufacturing , pp. 169. [4] Weiss, L.E., Merz, R., Prinz, F.B., Neplotnik, G., Padmanabhan, P., Schultz, L., Ramaswami, K. (1997

.05.024 [14] C lark D., Bache M., Whittaker M.: Shaped metal deposition of a nickel alloy for aero engine applications. Journal of Materials Processing Technology, 203/1-3. (2008) 439–448. https://doi.org/10.1016/j.jmatprotec.2007.10.051 [15] Baufeld B., Van der Biest O., Gault R.: Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: Microstructure and mechanical properties . Materials and Design, 31/1. (2010) 106–111. https://doi.org/10.1016/j.matdes.2009.11.032 [16] Barreda J. L., Santamaram F., Azpiroz X., Irisarri A. M., Varona J. M

.05.011 Dhillon, A., Schneider, P., Kuhn, G. (2011). Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing. Journal of Materials Science: Materials in Medicine , 22 (12), 2599–2605. https://doi.org/10.1007/s10856-011-4443-z Gapinski, B., Janicki, P., Marciniak-Podsadna, L., Jakubowicz, M. (2016). Application of the computed tomography to control parts made on additive manufacturing process. Procedia Engineering , 149 , 105–121. https://doi.org/10.1016/j.proeng.2016.06.645 Hufenbach, W., Böhm, R., Gude, M

REFERENCES 1. Gibson I., David W., Rosen D. & Stucker B. (2006). Additive Manufacturing Techno-logies: 3D Printing, Rapid Prototyping, and Direct digital manufacturing. New York: Springer. 2. Campbell J. (2002) “Castings” Butterworth-Heinemann. 3. Verdins G. & Dukulis I., (2008). “Material science” – Riga, LLU. 4. Karnati, S., Axelsen, I., Liou, F. F., & Newkirk, J. W. (2016). Investigation of tensile properties of bulk and SLM fabricated 304L stainless steel using various gage length specimens. Proceedings of the 27th Annual International Solid Freeform

., Cano R., Wincheski R., Stelter C., Grimsley B., Working D., Siochi E. (2016), 3-D printing of multifunctional carbon nanotube yarn reinforced components, Additive Manufacturing , 12, 38–44. 5. Harrass M., Friedrich K., Almajid A.A . (2010), Tribological behavior of selected engineering polymers under rolling contact, Tribology International , 43, 635-646. 6. Kaczyński R., Wilczewska I., A. Sfiridienok (2014) Peculiarities of the wear mechanism of polymers reinforced with unidirectional carbon fibers, Friction and Wear , 35(6), 449-454. 7. Kumar S

References [1] Béres L: Javító- és felrakóhegesztések. In: Hegesztési zsebkönyv. (Szerk.: Gáti J.). Cokom Mérnökiroda Kft., Miskolc, 2003. 539–557. [2] Uzonyi S., Asztalos L., Farkas A., Dobránszky J.: Additív hegesztéses gyártás jelene és jövője. Hegesztéstechnika, 28. (2017) 89–92. [3] Ding D. et al.: Wire-feed additive manufacturing of metal components: technologies, developments and future interests . The International Journal of Advanced Manufacturing Technology, 81/1–4. (2015) 465–481. https://doi.org/10.1007/s00170-015-7077-3 [4] Wang F. et al

Abstract

The paper discusses the use of 3D digitization and additive manufacturing technologies in the field of medicine. In addition, applications of the use of 3D digitization and additive manufacturing methods are described, focusing on the design and manufacture of individual medical aids. Subsequently, the process of designing and manufacturing of orthopedic aids using these technologies is described and the advantages of introducing the given technologies into the design and manufacturing processes in the medicine sector are presented.