Search Results

1 - 3 of 3 items :

Clear All
Natural Convection in a Hydrodynamically and Thermally Anisotropic Non-Rectangular Porous Cavity: Effect of Internal Heat Generation/Absorption

Abstract

Laminar natural convection in a trapezoidal porous vertical cavity has been investigated in this work. It is assumed that the porous enclosure is filled up with a permeable material subject to hydrodynamic and thermal anisotropy, the flow being governed by the Darcy law as applicable to a non-isotropic medium. It is further assumed that (i) there is heating at the left vertical wall and cooling at the right wall of the enclosure and (ii) the flow domain is subject to the presence of heat source or heat sink. The partial differential equations governing the resulting free convection have been solved numerically in the non-dimensional forms. There arises a number of parameters relating to buoyancy, internal heating, cavity aspect ratio and inclination of the upper surface to the horizontal. The influence of these parameters has been illustrated and analyzed through contours of streamlines and isotherms. We have also discussed the role of internal heating as well as anisotropy on the heat transfer characteristics.

Open access
The high accuracy conserved splitting domain decomposition scheme for solving the parabolic equations

Abstract

In this paper, the high accuracy mass-conserved splitting domain decomposition method for solving the parabolic equations is proposed. In our scheme, the time extrapolation and local multi-point weighted average schemes are used to approximate the interface fluxes on interfaces of sub-domains, while the interior solutions are computed by one dimension high-order implicit schemes in sub-domains. The important feature is that the developed scheme keeps mass conservation and are of second-order convergent in time and fourth-order convergent in space. Numerical experiments confirm the convergence.

Open access
Penetrative convection due to absorption of radiation in a magnetic nanofluid saturated porous layer

Abstract

The present study investigates the onset of penetrative convection in- duced by selective absorption of radiation in a magnetic nanofluid saturated porous medium. The influence of Brownian motion, thermophoresis, and magnetophoresis on magnetic nanofluid treatment is taken into consideration. The Darcy’s model is selected for the porous medium. We conduct a linear stability analysis to examine the onset of instability and evaluate the results for two different configurations, namely, when the layer is heated from below and when the layer is heated from above. The numerical investigations are carried out by applying the Chebyshev pseudospectral method. The effect of the porosity parameter E, parameter Y (represents the ratio of internal heating to boundary heating), Lewis number Le, concentration Rayleigh number Rn, Langevin parameter αL, width of nanofluid layer d, diffusivity ratio η, and modified diffusivity ratio NA is examined at the onset of convection. The results indicate that the convection commences easily with an increase in the value of Y, Le, and NA but opposite in the case with a decrease in the value of E, αL, η and d for both the two configurations. The parameter Rn advances the onset of convection when the layer is heated from below, while delays the onset of convection when the layer is heated from above.

Open access