Search Results

1 - 2 of 2 items :

Clear All


In this article, we attain new analytical solution sets for nonlinear time-fractional coupled Burgers’ equations which arise in polydispersive sedimentation in shallow water waves using exp-function method. Then we apply a semi-analytical method namely perturbation-iteration algorithm (PIA) to obtain some approximate solutions. These results are compared with obtained exact solutions by tables and surface plots. The fractional derivatives are evaluated in the conformable sense. The findings reveal that both methods are very effective and dependable for solving partial fractional differential equations.


This work presents a numerical comparison between two efficient methods namely the fractional natural variational iteration method (FNVIM) and the fractional natural homotopy perturbation method (FNHPM) to solve a certain type of nonlinear Caputo time-fractional partial differential equations in particular, nonlinear Caputo time-fractional wave-like equations with variable coefficients. These two methods provided an accurate and efficient tool for solving this type of equations. To show the efficiency and capability of the proposed methods we have solved some numerical examples. The results show that there is an excellent agreement between the series solutions obtained by these two methods. However, the FNVIM has an advantage over FNHPM because it takes less time to solve this type of nonlinear problems without using He’s polynomials. In addition, the FNVIM enables us to overcome the diffi-culties arising in identifying the general Lagrange multiplier and it may be considered as an added advantage of this technique compared to the FNHPM.