Search Results

1 - 1 of 1 items :

  • "2-CN model" x
Clear All
The Use of Asymptotic Functions for Determining Empirical Values of CN Parameter in Selected Catchments of Variable Land Cover

Abstract

The aim of the study was to assess the applicability of asymptotic functions for determining the value of CN parameter as a function of precipitation depth in mountain and upland catchments. The analyses were carried out in two catchments: the Rudawa, left tributary of the Vistula, and the Kamienica, right tributary of the Dunajec. The input material included data on precipitation and flows for a multi-year period 1980–2012, obtained from IMGW PIB in Warsaw. Two models were used to determine empirical values of CN obs parameter as a function of precipitation depth: standard Hawkins model and 2-CN model allowing for a heterogeneous nature of a catchment area.

The study analyses confirmed that asymptotic functions properly described P-CN obs relationship for the entire range of precipitation variability. In the case of high rainfalls, CN obs remained above or below the commonly accepted average antecedent moisture conditions AMCII. The study calculations indicated that the runoff amount calculated according to the original SCS-CN method might be underestimated, and this could adversely affect the values of design flows required for the design of hydraulic engineering projects. In catchments with heterogeneous land cover, the results of CN obs were more accurate when 2-CN model was used instead of the standard Hawkins model. 2-CN model is more precise in accounting for differences in runoff formation depending on retention capacity of the substrate. It was also demonstrated that the commonly accepted initial abstraction coefficient λ = 0.20 yielded too big initial loss of precipitation in the analyzed catchments and, therefore, the computed direct runoff was underestimated. The best results were obtained for λ = 0.05.

Open access