Search Results

You are looking at 1 - 10 of 72 items for :

  • virulence genes x
  • Microbiology and Virology x
Clear All
Open access

Joanna Kołsut, Paulina Borówka, Błażej Marciniak, Ewelina Wójcik, Arkadiusz Wojtasik, Dominik Strapagiel and Jarosław Dastych

method for the detection and enumeration of presumptive Escherichia coli – Most probable number technique. 2006, 1–18. 10. Jakobsen L., Garneau P., Kurbasic A., Bruant G., Stegger M., Harel J., Jensen K.S., Brousseau R., Hammerum A.M., Frimodt-Møller N.: Microarray-based detection of extended virulence and antimicrobial resistance gene profiles in phylogroup B2 Escherichia coli of human, meat, and animal origin. J Med Microbiol 2011, 60, 1502–1511. 11. Johnson T.J., Kariyawasam S., Wannemuehler Y., Mangiamele P., Johnson S.J., Doetkott C., Nolan L

Open access

Marek Selwet and Mariola Galbas

References 1. Andrzejewska M., Klawe J.J., Szczepańska B., Śpica D.: Occurrence of virulence genes among Campylobacter jejuni and Campylobacter coli isolates from domestic animals and children. Polish J Vet Sci 2011, 2 , 207-211. 2. Bang D.D., Scheutz F., Ahrens P., Pedersen K., Blom J., Madsen M.: Prevalence of cytolethal distending toxin (cdt) genes and CDT production in Campylobacter spp. isolated from Danish broilers. J Med Microbiol 2001, 50 , 1087-1094. 3. Carvalho A.C., Ruiz-Palacios G

Open access

Katarzyna Stępniewska and Iwona Markowska-Daniel

References 1. Bemis D.A., Fenwick B.: Bordetella . In: Pathogenesis of bacterial infections in animals ., edited by Gyles C.L., Prescott J.F., Songer J.G., Thoen C.O., Blackwell Publishing, USA, 2010, pp. 259-272. 2. Boschwitz J.S., van der Heide H.G.J., Mooi F.R., Relman D.A.: Bordetella bronchiseptica expresses the fimbrial structural subunit gene fimA. J Clin Microbiol 1997, 179 , 7882-7885. 3. Brickman T.J., Anderson M.T., Armstrong S.K.: Bordetella iron transport and virulence. Biometals

Open access

Daniela Cristea, Mihaela Oprea, Adriana Simona Ciontea, Felicia Antohe and Codruta-Romanita Usein

, Sakai T, Murayama SY, Makino S, Yoshikawa M. Molecular alteration of the 140-megadalton plasmid associated with loss of virulence and Congo red binding activity in Shigella flexneri. Infect Immun. 1986 Feb;51(2):470-5. 21. Venkatesan MM, Buysse JM, Kopecko DJ. Use of Shigella flexneri ipaC and ipaH gene sequences for the general identification of Shigella spp. and enteroinvasive Escherichia coli. J Clin Microbiol. 1989 Dec;27(12):2687-91. 22. Qu M, Zhang X, Liu G, Huang Y, Jia L, Liang W, et al. An eight-year study of Shigella species in Beijing, China

Open access

Omar Sadik, Lia Mara Ditu, Irina Gheorghe, Alina Maria Holban, Carmen Curutiu, Gratiela Gradisteanu Parcalabioru, Ionela Avram, Otilia Banu, Othman Al-mahdawy, Dunya A. Alkurjia and Mariana Carmen Chifiriuc

References 1. Calderone RA, Fonzi WA. Virulence factors of Candida albicans . Trends Microbiol. 2001;9(7):327-35. DOI: 10.1016/S0966-842X(01)02094-7 2. Cirpaciu D, Goanţă CM, Tusaliu M, Curutiu C, Budu V. Microbial etiology of acute otitis externa-a one year study. Rom Biotech Lett. 2017;22(1):12316. 3. Fanello S, Bouchara J, Sauteron M, Delbos V, Parot E, Marot-Leblond A, et al. Predictive value of oral colonization by Candida yeasts for the onset of a nosocomial infection in elderly hospitalized patients. J Med Micro-biol. 2006

Open access

Mihaela Oprea and Codruța-Romanița Usein

References 1. Etcheverría AI, Padola NL. Shiga toxin-producing Escherichia coli: factors involved in virulence and cattle colonization. Virulence. 2013;4:366-72. DOI: 10.4161/viru.24642 2. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev. 2013;26(4):822-80. DOI: 10.1128/CMR.00022-13 3. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123-40. DOI: 10.1038/nrmicro818

Open access

Cansu Onlen, Nizami Duran, Suphi Bayraktar, Emrah Ay and Burçin Ozer

enteropathogenic Escherichia coli (EPEC) in raw yak (Poephagus grunniens) milk and milk products. Res Vet Sci. 2012;93(2):604-10. DOI: 10.1016/j.rvsc.2011.12.011 13. Russo LM, Melton-Celsa AR, Smith MJ, O’Brien AD. Comparisons of native Shiga toxins (Stxs) type 1 and 2 with chimeric toxins indicate that the source of the binding subunit dictates degree of toxicity. PLoS One 2014;9:e93463. DOI: 10.1371/journal.pone.0093463 14. Bai J, Shi X, Nagaraja TG. A multiplex PCR procedure for the detection of six major virulence genes in Escherichia coli O

Open access

Chunxiao Liu, Mingliang Li, Xingwang Yin, Hongliang Zhang, Lirun Xiang, Hongyue Zhai, Congcong Wang, Yunchao Kan, Lunguang Yao, Zhijun Tian and Chaoliang Leng

polyprotein of 3,898 amino acids, with a 5′ untranslated region (UTR) and a 3′UTR at either end ( 18 ). The polyprotein undergoes viral and cellular proteolysis to produce four structural proteins (C, E0 or E rns , E1, and E2) and eight non-structural proteins (N pro , P7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) ( 18 ). Because of its utility in tracking the virus origin and developing effective control strategies against CSF, many studies focus on sequence diversity analysis of CSFV, particularly the sequence variation associated with virulence changes ( 8 ). The sequence

Open access

Dragos Florea, Steliana Huhulescu, Alexander Indra, Ioana Badicut, Alexandru Rafila, Dan Otelea and Gabriel Adrian Popescu

;29:33–7. 10. Kato H, Kato N, Katow S, Maegawa T, Nakamura S, Lyerly DM. Deletions in the repeating sequences of the toxin A gene of toxin A-negative, toxin B-positive Clostridium difficile strains. FEMS Microbiol Lett. 1999;175:197–203. DOI: 10.1111/j.1574-6968.1999. tb13620.x 11. Stubbs SL, Brazier JS, Talbot PR, Duerden BI. PCR-restriction fragment length polymorphism analysis for identification of Bacteroides spp. and characterization of nitroimidazole resistance genes. J Clin Microbiol. 2000;38:3209–13. 12. Spigaglia P, Mastrantonio P. Molecular analysis

Open access

Katarzyna Dmowska, Kinga Wieczorek, Orla Lynch and Jacek Osek


A total of 135 L. monocytogenes strains isolated from slaughtered cattle and beef meat were tested by the pulsed field gel electrophoresis (PFGE). The AscI restriction analysis revealed a genetic heterogeneity among investigated isolates since 31, 9, and 35 profiles were distinguished among hide, carcass, and meat strains, respectively. The PFGE profiles of the isolates were also analysed in relation to serotypes, virulence genes, and antimicrobial resistance. It was shown that strains displaying the same PFGE type were of the same serotype while correlation between pulsotype and antimicrobial resistance was poor. The obtained results suggest that a cross-contamination between bovine hides and carcasses may occur during the slaughter process. Moreover, identification of identical PFGE types among L. monocytogenes found during a study period may suggest a common source of contamination or presence of persistent strains able to survive for a long time. These results emphasise the importance of molecular subtyping methods, including PFGE, in monitoring and tracking pathogen contamination along food chain.