Search Results

You are looking at 1 - 10 of 155 items for :

  • sustainability x
  • Materials Sciences x
Clear All
Open access

Jan Johansson

). “The Construction of Affordable Low-Energy Prefabricated Housing”. In: Trubiano, F. (ed.), The Design and Construction of High Performance Homes: Building Envelopes, Renewable Energies and Integrated Practice (p. 203-216). Abingdon: Routledge. [5] [5]Bordass, B. & Leaman, A. (2013). Part 2: Building Performance: The Bigger Picture. Building professionals and the challenge of sustainability. Located 17. September 2018 on [6] [7] [6]Bordass, B. Leaman, A. & Willis, S. (1994

Open access

Andrei - Florin Clitan


Durabilitatea este un termen folosit tot mai des în ultima vreme, acesta bazându-se pe trei tipuri de factori: sociali, economici și de mediu. Sistemele durabile de transport duc la creșterea coeziunii sociale, reduc problemele de mediu și ajută la crearea unei economii mai eficiente. Transportul durabil constă într-un sistem complex, care este proiectat pentru a asigura nevoile de mobilitate ale generațiilor prezente, fără a deteriora factorii de mediu și de sănătate. Prin îmbunătățirea eficienței energetice și reducerea consumului de materiale, acesta trebuie să fie capabil să îndeplinească în condiții optime, nevoia de mobilitate pentru generațiile viitoare. Sistemul de transport actual din țara noastră nu are un caracter de durabilitate.

Acest articol încearcă să identifice o serie de probleme și disfuncționalități ale sistemelor de transport, din perspectiva unui sistem de transport durabil. Pentru alinierea la standardele Uniunii Europene este necesar să se ia măsuri pentru îmbunătățirea actualului sistem de transport.

Soluțiile propuse trebuie să fie soluții ecologice, social și economic viabil echitabile. Există o serie de beneficii prin implementarea unui astfel de sistem, atât directe, cât și indirecte: un cost redus de transport, confort sporit, mai puțină poluare a mediului, reducerea accidentelor rutiere. Durabilitatea rețelelor de drumuri este atât o provocare cât și o necesitate a zilelor noastre.

Open access

Chen Wang, Faizul Azli Mohd Rahim, Nurul Safwah Mohd Yusoff, Hamzah Abdul Rahman and Vili How

), “Energy and policy providing for sustainable rural livelihoods in remote locations - the case of Cuba”, Geoforum 40, 645-654. [7] Crisp, J., and Elliott, B. (2005), Introduction to fiber optics. Optic Fiber and Light - A Brilliant Combination (3rd ed.), Elsevier. [8] Edwards, L. and Torcellini, P. (2002), “A Literature Review of the Effects of Natural Light on Building Occupants”, Technical Report, National Renewable Energy Laboratory, U.S. Department of Energy Laboratory, NREL/TP-550-30769. [9] Egan, M. D. and Klas, R. H. (1983), Concepts in architectural

Open access

Melania R. Boitor, Dago Antov, Mihai Iliescu, Imre Antso and Roland Mäe

References [1]. ANTSO IMRE, ANTOV DAGO, MÄE, ROLAND, "Settlement changes effect to mobility in suburban area of Tallinn". In Ecology & Safety. 22nd International Symposium. ISSN: 1313-2563 7-11, 2013, Bulgaria. [2]. BOITOR ROZALIA, ANTOV DAGO, ANTSO IMRE, ILIESCU MIHAI, "Analyzing the transportation accessibility for the city of Cluj-Napoca, a sustainable approach". In Ecology & Safety, 22nd International Symposium. ISSN: 1313-2563 7-11, 2013, Bulgaria. [3]. BOITOR ROZALIA, M., KUSZALIK JOZSEF , ANTOV DAGO

Open access

B. Mansoury and H. R. Tabatabaiefar

:// [5] EPA (2013), Environmental Protection Agency, Retrieved from . [6] IEA (2015), International Energy Agency, Retrieved from . [7] Lyons, P. and Reardon, C. (2013), “Australia's Guide to Environmentally Sustainable Homes”, Retrieved from . [8] McGee, C. M., Partridge, E. Y., Carrard, N. R. and Milne, G. R. (2008), “Mainstreaming sustainable housing: policies and programs that work”, Proceedings of the 2008 World

Open access

Viktor Sebestyén, Viola Somogyi, Szandra Szőke and Anett Utasi

.: Review of combined approaches and multi-criteria analysis for corporate environmental evaluation, J. Clean. Prod. , 2013 39 , 355-371 DOI: 10.1016/j.jclepro.2012.07.058 [20] SDEWES Index [Online] , Accessed: 23 rd October 2017. [21] Kılkış, Ş.: Sustainable development of energy, water and environment systems index for Southeast European cities, J. Clean. Prod. , 2016 130 , 222-234 DOI: 10.1016/j.jclepro.2015.07.121 [22] Kılkış, Ş.: Composite index for benchmarking local energy systems of Mediterranean port cities

Open access

Tobias Danner and Harald Justnes

REFERENCES 1. Hasanbeigi A, Menke C & Price L, “The CO 2 abatement cost curve for the Thailand cement industry,” Journal of Cleaner Production , Vol. 15, 2010, pp. 1509-1518. 2. Benhelal E: “Global strategies and potentials to curb CO 2 emissions in cement industry,” Journal of Cleaner Production , Vol 51, 2013, pp. 142-161. 3. World Business Council for Sustainable Development (WBCS): “Cement Industry Energy and CO 2 Performance - Getting the numbers right,” 2011, Geneva, Switzerland. 4. Bosoaga A, Masek O &OakeyJ E: “CO2 Capture

Open access

Otto During, Silu Bhochhibhoya, Ramesh Kumar Maskey and Rajendra Joshi

REFERENCES 1. Andrew R M: “Global CO 2 Emissions from Cement Production,” Earth Syst. Sci. Data , Oslo, Norway, No. 10, 2017, 195-217, 2017. 2. Herzog T and Billings B: “Navigating the Numbers,” World Resource Institute, 2005. 3. Schneider M, Romer M, Tschudin M, and Bolio H, “Sustainable Cement Production - Present and Future,” Cem. Concr. Res ., Vol. 41, No. 7, 2011, pp. 642–650. 4. Wray P, “Straight Talk with Karen Scrivener on Cements, CO 2 and Sustainable Development,” Am. Ceram. Soc. Bull ., Vol. 91, June-July 2012, pp. 47

Open access

A. Zieliński, S. Sobieszczyk, T. Seramak, W. Serbiński, B. Świeczko-Żurek and A. Ossowska

Biocompatibility and Bioactivity of Load-Bearing Metallic Implants

The main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation; obtaining of a Ti alloy with designed porosity; developing of an oxidation technology resulting in high corrosion resistance and bioactivity; developing of technologies for hydroxyapatite (HA) deposition aimed at composite bioactive coatings; developing of technologies of precipitation of the biodegradable core material placed within the pores.

The examinations of degradation of Ti implants are carried out in order to recognize the sources of both early allergies and inflammation, and of long term degradation. The theoretical assessment of corrosion is made assuming three processes: electrochemical dissolution through imperfections of the anodic oxide layer, diffusion of metallic ions through the oxide layer, and dissolution of oxides themselves.

In order to increase the biocompatibility, the toxic elements, aluminium (Al) and vanadium (V) are eliminated. The experiments have shown that titanium - zirconium - niobium (Ti-Zr-Nb) alloy may be a such a material which can also be prepared by both powder metallurgy (P/M) technique and selective laser melting. The porous (scaffold) Ti-Zr-Nb alloy is now obtained by powder metallurgy, classical and with space holders used before melting and decomposed, or remained during melting and removed by subsequent water dissolution. The oxidation of porous materials is performed either by electrochemical technique in special electrolytes or by chemical and/or hydrothermal method in order to obtain the optimal oxide layer well adjacent to an interface, preventing the base metal against corrosion and bioactive because of its nanotubular structure, permitting injection of some species into the pores. The Ca, O and N ion implantation or deposition of zirconia sublayers may be used to increase the biocompatibility, bioactivity and corrosion resistance. The HA coating obtained by either electrophoretic, biomimetic or by sol-gel deposition should result in gradient structure similar to bone structure, possessing high adhesion strength. The core material of the porous material should result in a biodegradable material, allowing slower dissolution followed by stepwise growth of bone tissue and angiogenesis, preventing local inflammation processes, sustaining the mechanical strength close to that of non-porous material.

Open access

J. Shanafield, A. Otieno, R. Tatara, D. Schroeder and K. Rosentrater

References Mohanty A.K., Seydibeyoglu M.O., Misra M.: Wastes and undervalued coproducts from biofuel industries as raw materials for new industrial products: Greener pathway for a sustainable bioeconomy. SAMPE '09 Spring Symposium Conference Proceedings, Baltimore, Maryland, 2009. Rosentrater K.A., Otieno A.W.: Considerations for manufacturing bio-based plastic products. J. Polym. Environ. 14 (2006), 335-346. Tatara R.A., Rosentrater K.A., Suraparaju S.: Design properties for molded