Search Results

You are looking at 1 - 10 of 168 items for :

  • structural steel x
  • Materials Processing x
Clear All
Open access

T. Lipiński and A. Wach

, Zmęczeniowe pękanie metali, (1985) WNT War-saw (in Polish). [5] T. Lipiński, A. Wach, The effect of out-of-furnace treatment on the properties of high-grade medium-caborn structural steel, Arch. of Foundry Eng. 10 , 93-96 (2009). [6] T. Himemiya, W. Wołczyński, Prediction of Solidification Path and Solute Redistribution of an Iron-based Multi-component Alloy Considering Solute Diffusion in the Solid Materials. Transactions of the Japan Institute of Metals 43 , 2890-2896 (2002). [7] W. Wołczyński, Concentration Micro-Field for Lamellar Eutec-tic Growth. Defect and

Open access

A. Kokosza and J. Pacyna

References M.E. Blantier, Fazovyje prevraščenija pri tiermičeskoj obrabotkie stali, Mietallurgizdat Moskva (1962). J. Nutting, Journal of the Iron and Steel Institute 207 , 872 (1969). F.B. Pickering, Physical Metallurgy of Stainless Steel Developments, Int. Met. Rev. 21 , 227 (1976). F.B. Pickering, Physical Metallurgy and the Design of Steels, Applied Science Publishers LTD London (1978). B.K. Jha, R. Avtar, S. Dwivedi

Open access

T. Lipiński

REFERENCES [1] J. Szala, Assessment of Fatigue Life of Machine Elements Under Random Loads and Programmatic. Bydgoszcz University of Technology and Agriculture, Bydgoszcz 1980 (in Polish). [2] W. Wołczyński, Mathematical Modeling of the Microstructure of Large Steel Ingots, Entry 196 [in:] The Encyclopedia of Iron, Steel, and Their Alloys, Eds. Taylor & Francis Group, New York-USA, 2015 (in print). DOI: 10.1081/E-EISA-120053685. [3] A. Warhadpande, B. Jalalahmadi, T. Slack, F. Sadeghi, Int J Fatigue 32 685 (2010). [4] Guide engineer

Open access

J. Pacyna, R. Dabrowski, E. Rozniata, A. Kokosza and R. Dziurka

of precipitation hardened copper alloys, Archives of Metallurgy and Materials 56, 1, 171-179 (2011). [7] N. Tsuji, Y. Matsubara, Y. Saito, Dynamic recrystallization of ferrite in interstitial free steel, Scripta Materialia 37, 4, 477-484 (1997). [8] Y. Hayakawa, J.A. Szpunar, Modelling of texture development during recrystallization of interstitial free steel, Acta Materialia 45, 6, 2425-2434 (1997). [9] J.F.C. Lins, H.R. Sandin, H.J. Kestenbach, D. Raabe, K. Vecchi, A microstructural investigation of adiabatic shear

Open access

M. Sułowski and A. Ciaś

References S.C. Mitchell, A.S. Wronski, A. Cias, M. Stoytchev, Proc. PM 2 TEC'99, MPIF, Princeton, New Jersey 2, Part 7 - P/M steels, 129 (1999). A. Cias, Development and Properties of Fe-Mn-(Mo)-(Cr)-C Sintered Structural Steels (AGH-UST, Uczelniane Wydawnictwo Naukowo-Dydaktyczne, Kraków 2004). M. Sulowski, A. Cias, Proc. PM 2004 World Congress & Exhibition, EPMA, Vienna, Austria 3 , 93 (2004). M. Youseffi, S.C. Mitchell, A.S. Wronski, A. Cias, Powder

Open access

A. Winiowski

. Khan, Y. Yang, Brazing titanium alloy and stainless steel with copper-based filler metal. Lectures of International Conference "Brazing, high temperature brazing and diffusion welding", Aachen, 317-321, (2004). A. Winiowski, Impact of condition and parameters of brazing of stainless steel and titanium on mechanical and structural properties of joints. Archives of Metallurgy and Materials 52 , 4, 593-608 (2007). A. Winiowski, M. Różański, The Final Report of Statutory R&D Activity. Dc-19, Institute of Welding

Open access

A. Cias and M. Stoytchev

). [17] S.C. Mitchell, S. Szczepanik, P. Nikiel, A. S. Wronski: Rudy i Metale Nieżelazne 59, 12, 605 (2014). [18] S. Szczepanik, S. C. Mitchell, A. A. S. Abosbaia, A. S. Wronski, Powder Metall. Progress 10, 1, 59 (2010). [19] A. Cias, Powder Metall. 56, 3, 231 (2013). [20] A. Cias, Sci. Sinter 47, 1, 61 (2015). [21] A. Cias, Kovove Mater., 54, 4, 269 (2016). [22] A. Ciaś: Development and properties of Fe-Mn-(Mo)-(Cr)-C sintered structural steels, ISSN0867-6631, 129, AGH - UWNT, Kraków 2004

Open access

Ch. Fiał, A. Ciaś, A. Czarski and M. Sułowski

. Ciaś, Development and Properties of Fe-Mn-(Mo)-(Cr)-C Sintered Structural Steels, Uczelnianie Wydawnictwa Naukowo-Dydaktyczne, Kraków 2004.

Open access

B. Garbarz, M. Adamczyk and B. Niżnik-Harańczyk

.G. Baligidad, V.V. Satya Prasad, D.V.V. Satyanarana, Mater. Sci. Technol. 31 (12), 1408-1416 (2015). [15] M.D. Bambach, A. Stieben, W. Bleck, Steel Res. Int. 87 (3), 364-375 (2016). [16] S.Y. Shin, H. Lee, S.Y. Han, C-H. Seo, K. Choi, S. Lee, N.J. Kim, J-H. Kwak, K-G. Chin, Metall. Mater. Trans. 41A , 138-148 (2010). [17] C-H. Seo, K.H. Kwon, K. Choi, K-H. Kim, J.H. Kwak, S. Lee, N.J. Kim, Scripta Materialia 66 , 519-522 (2012). [18] S-J. Park, B. Hwang, K.H. Lee, T-H. Lee, D-W. Suh, H.N. Han, Scripta Materialia 68 , 365-369 (2013). [19] V

Open access

M. Kubiak, W. Piekarska, S. Stano and Z. Saternus

Abstract

The numerical model of thermal and structural phenomena is developed for the analysis of Yb:YAG laser welding process with the motion of the liquid material in the welding pool taken into account. Temperature field and melted material velocity field in the fusion zone are obtained from the numerical solution of continuum mechanics equations using Chorin projection method and finite volume method. Phase transformations in solid state are analyzed during heating and cooling using classical models of the kinetics of phase transformations as well as CTA and CCT diagrams for welded steel. The interpolated heat source model is developed in order to reliably reflect the real distribution of Yb:YAG laser power obtained by experimental research on the laser beam profile.

On the basis of developed numerical models the geometry of the weld and heat affected zone are predicted as well as the structural composition of the joint.