Search Results

You are looking at 1 - 10 of 26 items for :

  • pharmacokinetics x
  • Haematology, Oncology x
Clear All
Open access

Ruxandra Irimia, Ioana Teodora Tofolean, Roxana Gabriela Sandu, Oana Elena Băran, Maria Cătălina Ceauşescu, Vlad Coşoreanu, Maria Teodora Ilie, Ramona Babeş, Constanţa Ganea and Irina Băran

flavonoid quercetin: pharmacokinetics and evidence for in vitro tyrosine kinase inhibition.Clin Cancer Res 1996;2:659-68 [19] Am J Clin Nutr Oct 1, 2001, vol 74, no 4 418-425 [20] Rice s.a., 2003; Loke s.a., 2008; Kanadaswami s.a., 2005

Open access

George Fotopoulos and George Pentheroudakis

) and French Sarcoma Group (FSG) study. Br J Cancer 2011; 104:1544. [31] Le Cesne A, Blay JY, Judson I, et al. Phase II study of ET-743 in advanced soft tissue sarcomas: a European Organisation for the Research and Treatment of Cancer (EORTC) soft tissue and bone sarcoma group trial. J Clin Oncol 2005; 23:576. [32] Garcia-Carbonero R, Supko JG, Manola J, et al. Phase II and pharmacokinetic study of ecteinascidin 743 in patients with progressive sarcomas of soft tissues refractory to chemotherapy. J Clin Oncol 2004; 22

Open access

Hend Ahmed El-Hadaad, Hanan Ahmed Wahba and Hayam Fathy Abd-El Hay Ghazy

and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther. 2003; 2:471-8. [15] Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003; 9:327-37. [16] Pantuck AJ, Zeng G, Belldegrun AS, Figlin RA. Pathobiology, prognosis and targeted

Open access

Renata Rezonja, Lea Knez, Tanja Cufer and Aleš Mrhar

. Pharmacokinetic optimisation of treatment with oral etoposide. Clin Pharmacokinet 2004; 43: 441-6. 13. Montecucco A, Biamonti G. Cellular response to etoposide treatment. Cancer Lett 2007; 252: 9-18. 14. Hande KR. The importance of drug scheduling in cancer chemotherapy: etoposide as an example. Oncologist 1996; 1: 234-9. 15. Greco FA, Johnson DH, Hande KR, Porter LL, Hainsworth JD, Wolff SN. High-dose etoposide (VP-16) in small-cell lung cancer. Semin Oncol 1985; 12(Suppl 2): 42-4. 16. Slevin ML

Open access

Renata Rezonja Kukec, Iztok Grabnar, Tomaz Vovk, Ales Mrhar, Viljem Kovac and Tanja Cufer


Background. Chemotherapy with platinum agent and etoposide for small-cell lung cancer (SCLC) is supposed to be associated with intermediate risk (10-20%) of febrile neutropenia. Primary prophylaxis with granulocyte colonystimulating factors (G-CSFs) is not routinely recommended by the treatment guidelines. However, in clinical practice febrile neutropenia is often observed with standard etoposide/platinum regimen. The aim of this analysis was to evaluate the frequency of neutropenia and febrile neutropenia in advanced SCLC patients in the first cycle of standard chemotherapy. Furthermore, we explored the association between severe neutropenia and etoposide peak plasma levels in the same patients.

Methods. The case series based analysis of 17 patients with advanced SCLC treated with standard platinum/etoposide chemotherapy, already included in the pharmacokinetics study with etoposide, was performed. Grade 3/4 neutropenia and febrile neutropenia, observed after the first cycle are reported. The neutrophil counts were determined on day one of the second cycle unless symptoms potentially related to neutropenia occurred. Adverse events were classified according to Common Toxicity Criteria 4.0. Additionally, association between severe neutropenia and etoposide peak plasma concentrations, which were measured in the scope of pharmacokinetic study, was explored.

Results. Two out of 17 patients received primary GCS-F prophylaxis. In 15 patient who did not receive primary prophylaxis the rates of both grade 3/4 neutropenia and febrile neutropenia were high (8/15 (53.3%) and 2/15 (13.3%), respectively), already in the first cycle of chemotherapy. One patient died due to febrile neutropenia related pneumonia. Neutropenic events are assumed to be related to increased etoposide plasma concentrations after a standard etoposide and cisplatin dose. While the mean etoposide peak plasma concentration in the first cycle of chemotherapy was 17.6 mg/l, the highest levels of 27.07 and 27.49 mg/l were determined in two patients with febrile neutropenia.

Conclusions. Our study indicates that there is a need to reduce the risk of neutropenic events in chemotherapy treated advanced SCLC, starting in the first cycle. Mandatory use of primary G-CSF prophylaxis might be considered. Alternatively, use of improved risk models for identification of patients with increased risk for neutropenia and individualization of primary prophylaxis based on not only clinical characteristics but also on etoposide plasma concentration measurement, could be a new, promising options that deserves further evaluation.

Open access

Nina Erculj, Barbara Faganel Kotnik, Marusa Debeljak, Janez Jazbec and Vita Dolzan

. Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol 2011; 67: 993-1006. 4. Erculj N, Kotnik BF, Debeljak M, Jazbec J, Dolzan V. Influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in childhood acute lymphoblastic leukemia. Leuk Lymphoma 2012; 53: 1096-104. 5. Jazbec J, Kitanovski L, Aplenc R, Debeljak M, Dolzan V. No evidence of association of

Open access

Janja Ocvirk and Martina Rebersek

-602. Ciardiello F, Cervantes A, Vega-Villegas ME, Casado E, Rodriguez-Braun E, Martinelli E., et al. Optimal dose for an every 2 week (q2w) cetuximab (C) regimen in patients (pts) metastatic colorectal cancer (mCRC): a phase I safety, pharmacokinetics(PK) and pharmacodynamics (PD) study of weekly (q1w) add q2w schedules. [Abstract]. Eur J Cancer 2007; 5(4): 247. Pfeiffer P, Bjerregaard JK, Qvortrup C, Jensen BV, Yilmaz M, Nielsen D. Simplification of cetuximab (Cet) administration: double dose of every second week as a 60 minute infusion. J Clin

Open access

Nobuyuki Toshikuni, Hisakazu Shiroeda, Kazuaki Ozaki, Yasuhiro Matsue, Takahiro Minato, Tomoe Nomura, Nobuhiko Hayashi, Tomiyasu Arisawa and Mikihiro Tsutsumi

ablation of hepatocellular carcinoma. J Clin Ultrasound 2010; 38: 138-44. 20. Landmark KE, Johansen PW, Johnson JA, Johansen B, Uran SSkotland T. Pharmacokinetics of perfluorobutane following intravenous bolus injection and continuous infusion of sonazoid in healthy volunteers and in patients with reduced pulmonary diffusing capacity. Ultrasound Med Biol 2008; 34: 494-501. 21. Hiraoka A, Hirooka M, Koizumi Y, Hidaka S, Uehara T, Ichikawa S, et al. Modified technique for determining therapeutic response to radiofrequency ablation

Open access

Robert Königsberg, Julia Maierhofer, Tanja Steininger, Gabriele Kienzer and Christian Dittrich

chemotherapy plus trastuzumab plus bevacizumab. Available at 16. Lu JF, Bruno R, Eppler S, Novotny W, Lum B, Gaudreault J. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol 2008; 62: 779-86. 17. Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J

Open access

Barbara Mali, Damijan Miklavcic, Luca G. Campana, Maja Cemazar, Gregor Sersa, Marko Snoj and Tomaz Jarm

; 9: 22-25. 31. Alberts DS, Chen HS, Liu R, Himmelstein KJ, Mayersohn M, Perrier D, et al. Bleomycin pharmacokinetics in man. I. Intravenous administration. Cancer Chemother Pharmacol 1978; 1: 177-181. 32. Sersa G, Jarm T, Kotnik T, Coer A, Podkrajsek M, Sentjurc M, et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br J Cancer 2008; 98: 388-398. 33. Sersa G, Krzic M, Sentjurc M, Ivanusa T, Beravs K, Kotnik V, et al. Reduced blood flow and oxygenation