Search Results

1 - 10 of 137 items :

  • pharmacokinetics x
Clear All
Rational application of fructose-1,6-diphosphate: From the perspective of pharmacokinetics

, C. A. Martinusso, C. M. Takiya, A. J. Silva, J. F. Ornellas, P. R. Elias, M. Leite, Jr. and L. R. Cardoso, Fructose-1,6-diphosphate as a protective agent for experimental ischemic acute renal failure, Kidney Int. 69 (2006) 68-72; DOI: 10.1038/sj.ki.5000013. 10. K. Xu and J. L. Stringer, Pharmacokinetics of fructose-1, 6-diphosphate after intraperitoneal and oral administration to adult rats, Pharmacol. Res. 57 (2008) 234-238; DOI 10.1016/j.phrs.2008.01.008. 11. S. Drabant, I. Klebovich, B. Gachalyi, G. Renczes and C. Farsang, Role

Open access
Pharmacokinetics Of Zinc In Broiler Chickens After Single Intraingluvial Administration With Zinc Aspartate

.0. Pharmacokinetic and Pharmacodynamic Data Analysis System for PC. Stuttgart, Jena, New York: Gustav Fisher; 1993. 18. Baggot DJ. The Physiological Basis of Veterinary Clinical Pharmacology. Oxford (UK): Blackwell Science Ltd; 2001. 19. Gibaldi M, Perrier D. Pharmacokinetics, Revised and Expanded. 2nd ed. Swarbrick J, editor. New York: Informa Healthcare Inc; 2007. 20. Yamaoka K, Nakagawa T, Uno T. Application of Akaike’s Information Criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm. 1978;6:166-75. 21. Ivanova

Open access
Pharmacokinetic comparisons of S-oxiracetam and R-oxiracetam in beagle dogs

-term memory, Proc. Natl. Acad. Sci. USA 91 (1994) 2041–2045. 4. C. Mondadori, H. J. Möbius and J. Borkowski, The GABAB receptor antagonist CGP 36,742 and the nootropic oxiracetam facilitate the formation of long-term memory, Behav. Brain Res . 77 (1996) 223–225. 5. W. H. Brooks, W. C. Guida and K. G. Daniel, The significance of chirality in drug design and development, Curr. Top. Med. Chem . 11 (2011) 760–770; DOI: 10.2174/156802611795165098. 6. A. J. Hutt, Chirality and pharmacokinetics: an area of neglected dimensionality, Drug Metabol. Drug

Open access
Preparation and characterization of simvastatin/DMβCD complex and its pharmacokinetics in rats

-005-4594-z 3. M. Schachter, Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update, Fundam. Clin. Pharmacol . 19 (2005) 117–125; https://doi.org/10.1111/j.1472-8206.2004.00299.x 4. A. Fattahi, J. Karimi-Sabet, A. Keshavarz, A. Golzary, M. Rafiee-Tehrani and F. A. Dorkoosh, Preparation and characterization of simvastatin nanoparticles using rapid expansion of supercritical solution (RESS) with trifluoromethane, J. Supercrit. Fluids 107 (2016) 469–478; https://doi.org/10.1016/j.supflu.2015.05.013 5. J. K. Patel and V. B

Open access
AKR1D1*36 C>T (rs1872930) allelic variant is associated with variability of the CYP2C9 genotype predicted pharmacokinetics of ibuprofen enantiomers – a pilot study in healthy volunteers

REFERENCES 1. K. D. Rainsford, Fifty years since the discovery of ibuprofen, Inflammopharmacol. 19 (2011) 293–297; https://doi.org/10.1007/s10787-011-0103-7 2. M. De Martino, A. Chiarugi, A. Boner, G. Montini and L. de’ Angelis, Working towards an appropriate use of ibuprofen in children: An evidence-based appraisal, Drugs 77 (2017) 1295–1311; https://doi.org/10.1007/s40265-017-0751-z . 3. H. Hao, G. Wang and Sun, Enantioselective pharmacokinetics of ibuprofen and involved mechanisms, Drug Metab. Rev . 37 (2005) 215–234; https

Open access
Pharmacokinetic evaluation of the interaction between oral kaempferol and ethanol in rats

flavonoid, kaempferol on human health and cancer chemoprevention, Food Chem. 138 (2013) 2099-2107; DOI: 10.1016/j.foodchem.2012.11.139. 4. A. Barve, C. Chen, V. Hebbar, J. Desiderio, C. L. Saw and A. Kong, Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats, Biopharm. Drug Dispos. 30 (2009) 356-365; DOI: 10.1002/bdd.677. 5. M. K. Piskula and J. Terao, Quercetin’s solubility affects its accumulation in rat plasma after oral administration, J. Agric. Food Chem. 10 (1998) 4313-4317; DOI: 10.1021/jf980117

Open access
Preparation and in vivo evaluation of a gel-based nasal delivery system for risperidone

References 1. T. Cabaleiro, D. Ochoa, R. López-Rodríguez, M. Román, J. Novalbos, C. Ayuso and F. Abad-Santos, Effect of polymorphisms on the pharmacokinetics, pharmacodynamics, and safety of risperidone in healthy volunteers, Hum. Psychopharmacol. 29 (2014) 459-469; DOI: 10.1002/hup.2420. 2. J. L. Sun, Q. X. Chen, S. Tian, F. R. Meng, Y. Lv and G. H. Du, Absorption of risperidone polymorphs administrated orally in rats, Chin. Pharm. J. 46 (2011) 1919-1922. 3. T. K. Vyas, A. Shahiwala, S. Marathe and A. Misra

Open access
Effect of quercetin on the transport of ritonavir to the central nervous system in vitro and in vivo

. DeArmond and S. B. Prusiner, Pharmacokinetics of quinacrine efflux from mouse brain via the P-glycoprotein efflux transporter, PLoS One 7 (2012) e39112; DOI: 10.1371/journal.pone.0039112. 4. D. Pal, D. Kwatra, M. Minocha, D. K. Paturi, B. Budda and A. K. Mitra, Efflux transporters- and cytochrome P-450-mediated interactions between drugs of abuse and antiretrovirals, Life Sci. 88 (2011) 959–971; DOI: 10.1016/j.lfs.2010.09.012. 5. A. Antinori, G. Arendt, J. T. Becker, B. J. Brew, D. A. Byrd, M. Cherner, D. B. Clifford, P. Cinque, L. G. Epstein, K

Open access
The absorption of oral morroniside in rats: In vivo, in situ and in vitro studies

.04.013 11. W. Wang, J. Xu, L. Li, P. Wang, X. Ji, H. Ai, L. Zhang and L. Li, Neuroprotective effect of morroniside on focal cerebral ischemia in rats, Brain Res. Bull . 83 (2010) 196–201; https://doi.org/10.1016/j.brainresbull.2010.07.003 12. P. Mehta, R. Shah, S. Lohidasan and K. R. Mahadik, Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants - A comprehensive review, J. Tradit. Complement. Med . 5 (2015) 207–227; https://doi:10.1016/j.jtcme.2014.11.041 13. S. Xiong, J. L. Li, X. Q. Zhu, X. Y. Wang, G. Y. Lv and Z. Q. Zhang

Open access
Pharmacokinetic studies and anticancer activity of curcumin-loaded nanostructured lipid carriers

anticancer properties of curcumin, Exp. Theor. Med. 10 (2015) 1615–1623. 6. M. Kanai, Y. Otsuka, K. Otsuka, M. Sato, T. Nishimura, Y. Mori, M. Kawaguchi, E. Hatano, Y. Kodama, S. Matsumoto, Y. Murakami, A. Imaizumi, T. Chiba, J. Nishihira and H. Shibata, A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin) in cancer patients, Cancer Chemother. Pharmacol. 71 (2013) 1521–1530; DOI: 10.1007/s00280-013-2151-8. 7. H. A. Hazzah, R. M. Farid, M. M. Nasra, M. A. El-Massik and O. Y. Abdallah, Lyophilized

Open access