Search Results

You are looking at 1 - 2 of 2 items for :

  • Engineering, other x
  • Materials Sciences x
Clear All
Open access

Radu Roşu, Viorel-Aurel Şerban, Alexandra Bucur, Mihaela Popescu and Dragoş Uţu

Caracterisation of Titanium Nitride Layers Deposited by Reactive Plasma Spraying

Forming and cutting tools are subjected to the intense wear solicitations. Usually, they are either subject to superficial heat treatments or are covered with various materials with high mechanical properties. In recent years, thermal spraying is used increasingly in engineering area because of the large range of materials that can be used for the coatings. Titanium nitride is a ceramic material with high hardness which is used to cover the cutting tools increasing their lifetime. The paper presents the results obtained after deposition of titanium nitride layers by reactive plasma spraying (RPS). As deposition material was used titanium powder and as substratum was used titanium alloy (Ti6Al4V). Macroscopic and microscopic (scanning electron microscopy) images of the deposited layers and the X ray diffraction of the coatings are presented. Demonstration program with layers deposited with thickness between 68,5 and 81,4 μm has been achieved and presented.

Open access

Ştefan Marian Lazăr and Elena Diaconu

Abstract

This paper aims to establish the interface conditions influence on the flexible pavement structures life. The methodology consists in using the interface constitutive model available in the Alizé calculation program to calculate the stresses and strains in the flexible pavement structures.

The design criteria related to limiting fatigue cracking of asphalt layers and permanent deformations at the subgrade level from the road bed are used to estimate the flexible pavement structures lifetime.

When calculating the critical stresses and strains, most mechanical design methods of the flexible pavement structures considers that the road layers at interfaces are perfect bonded or total unbonded.

Proper modeling of the interface binding condition is an important aspect in understanding the real behaviour of in-service flexible pavement structures.