Search Results

You are looking at 1 - 2 of 2 items for :

  • Nanotechnology x
Clear All
Open access

Martin Vanek, Filip Mravec, Martin Szotkowski, Dana Byrtusova, Andrea Haronikova, Milan Certik, Volha Shapaval and Ivana Marova

. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 2009; 36:163-180. 5. Kandori H, Sasabe H, MimuroI M. Direct Determination of a Lifetime of the S2 State of Beta-Carotene by Femtosecond Time-Resolved Fluorescence Spectroscopy. J Am Chem Soc 1994; 116:2671-2672. 6. Xia S, Tan C, Zhang Y, Abbas S, Feng B, Zhang X, Qin F. Modulating effect of lipid bilayer–carotenoid interactions on the property of liposome encapsulation. Colloids and Surfaces B: Biointerfaces 2015; 128:172-180. 7. Schlee C, Miedl M

Open access

Mahmut C. Ergören, Rita Neumann, Ingrid Berg and Alec J. Jeffreys

Abstract

PRDM9 plays a key role in specifying meiotic recombination hotspot locations in humans. To examine the effects of both the 13-bp sequence motif (cis-regulator) and trans-regulator PRDM9 on crossover frequencies and distribution, we studied Hotspot DA. This hotspot had the motif at its centre, and a single nucleotide polymorphism (SNP) that disrupts the motif. The crossover frequency showed Hotspot DA to be a regular hotspot with an average crossover rate (~8 X10-4) among hotspots assayed on autosomes. Our results show that, comparing the rates and distributions of sperm crossover events between donors heterozygous for the disrupting SNP showed that there was a huge asymmetry between the two alleles, with the derived, motif-disrupting allele completely suppressing hotspot activity. Intensive biased gene conversion, both in to crossovers and noncrossovers, has been found at Hotspot DA. Biased gene conversion that influences crossover and non-crossover hotspot activity correlates with PRDM9 allele A. In Hotspot DA, the lifetime of the hotspot mostly depends on the cis-regulatory disrupting SNP, and on the trans-regulatory factor PRDM9. Overall, our observation showed that Hotspot DA is the only evidence for human crossover hotspot regulation by a very strong cisregulatory disrupting SNP.