Search Results

1 - 9 of 9 items :

  • global geopotential model x
  • Geosciences x
Clear All
Evaluation of recent Earth’s global gravity field models with terrestrial gravity data

D., Popescu A., 2003: GOCE: ESA’s first Earth Explorer Core Mission, in G. B. Beutler, M. R. Drinkwater, R. Rummel, and R. von Steiger (eds.), Earth Gravity Field from Space – from Sensors to Earth Sciences, Space Sciences Series of ISSI, 18 , 419–433. Förste C., Bruinsma S., Abrykosov O., Flechtner F., Dahle C., Neumayer K.-H., Barthelmes F., König R., Marty J.-C., Lemoine J.-M., Biancale R., 2013: EIGEN-6C3stat – The newest high resolution global combined gravity field model based on the 4th release of the GOCE Direct Approach, presented at IAG Scientific

Open access
The quasigeoid modelling in New Zealand using the boundary element method

References Amos M. J., Featherstone W. E., 2009: Unification of New Zealand's local vertical datums: iterative gravimetric quasigeoid computations. J. Geod., 83 , 1, 57-68. Andersen O. B., Knudsen P., 2009: DNSC08 mean sea surface and mean dynamic topography models. J. Geophys. Res., 114, C1100. Andersen O. B., Knudsen P., Berry P., 2009: The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J. Geod., 84 , 191-199. Aoyama Y

Open access
An analysis of methods for gravity determination and their utilization for the calculation of geopotential numbers in the Slovak national levelling network

References Abelovič J., Mičuda J., Mitáš J., Weigel J., 1990: Measurements in the geodetic networks. Alfa, Bratislava, (in Slovak). Bublavý J., Droščák B., 2015: First steps to the new realization of the height system in the Slovak Republic and the status of the quasigeoids. Geodetic control and geodynamics, Kočovce, October 6–7, 2015, (in Slovak). Bucha B., Janák J., 2014: A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders: Efficient computation at irregular surfaces

Open access
A mathematical model of the bathymetry-generated external gravitational field

-170, doi: 10.1007/s00190-003-0318-5. Heiskanen W. H., Moritz H., 1967: Physical Geodesy. WH Freeman and Co., San Francisco. Hobson E. W., 1931: The theory of spherical and ellipsoidal harmonics. Cambridge University Press, Cambridge. Kaban M. K., Schwintzer P., Tikhotsky S. A., 1999: Global isostatic gravity model of the Earth. Geophys. J. Int., 136 , 519-536. Kaban M. K., Schwintzer P., 2001: Oceanic upper mantle structure from experimental scaling of Vs. and density

Open access
Global maps of the step-wise topography corrected and crustal components stripped geoids using the CRUST 2.0 model

-7807. Dérerová J., Zeyen H., Bielik M., Salman K., 2006: Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the eastern Carpathians. Tectonics , 25, 3, doi: TC3009 10.1029/2005TC001883. Hager B. H., 1983: Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett. , 63, 97-109. Heiskanen W. H., Moritz H., 1967: Physical geodesy. San Francisco, WH Freeman and Co. Hinze W. J., 2003

Open access
A new lithospheric model in the eastern part of the Western Carpatians: 2D integrated modelling

karpatsko-panónskeho regiónu v miocéne). Veda Bratislava, 202 p. Lachenbruch A. H., Morgan P., 1990: Continental extension, magmatism and elevation; formal relations and rules of thumb. Tectonophysics, 174, 39-62. Lemoine F. G., Kenyon S. C., Factor J. K., Trimmer R. G., Pavlis N. K., Chinn D. S., Cox C. M., Klosko S. M., Luthcke S. B., Torrence M. H., Wang Y. M., Williamson R. G., Pavlis E. C., Rapp R. H., Olson T. R., 1998: The development of the Joint NASA GSFC and NIMA geopotential model EGM96. NASA Goddard Space Flight Center

Open access
Computation of precise geoid model of Auvergne using current UNB Stokes-Helmert’s approach

. Berry PAM, 1999: Global digital elevation models – fact or fiction? Astron. Geophys., 40 , 3.10–3.13, doi: 10.1093/astrog/40.3.3.10. Berry P. A. M., Smith R. G., Benveniste J., 2010: ACE2: The new global digital elevation model. In: Gravity, Geoid and Earth Observation. IAG Symposia 135, Mertikas S. P. (ed), Springer, Berlin: 231–237. doi: 10.1007/978-3-642-10634-7-30. Bodelle et al., 1980: Carte géologique de la France et de la marge continentale, 1:1500 000, 1978–1979. Denker S., 2004: Evaluation of SRTM3 and GTOPO30 terrain data in Germany. In

Open access
Preliminary Unification of Kronsztadt86 Local Vertical Datum with Global Vertical Datum

). Estimating Canadian vertical datum offsets using GNSS/ levelling benchmark information and GOCE global geopotential models. Journal of Geodetic Science 2 (4). doi: 10.2478/ v10156-012-0008-4. Heiskanen, W. A. & Moritz, H. (1967). Physical Geodesy. San Francisco, California: W. H. Freeman and Company. Hoa, H. M. (2013). Estimating the geopotential value W 0 of the local geoid based on data from local and global normal heights of GPS/ leveling points in Vietnam. Geodesy and Cartography (Lithuania) 01/2013, 39 (3). doi: 10.3846/20296991.2013.823705. IGWiAG (2000

Open access
Theoretical and Applied Research in the Field of Higher Geodesy Conducted in Rzeszow

). Mathematical models for the combination of terrestrial and satellite Networks. The Canadian Surveyor, 28(5). Kryński J., Kloch-Główka G., (2009). Evaluation of the Performance of the New EGM2008 Global Geopotential Model over Poland. Geoinformation Issues, Vol. 1, No 1, 7-1 7/2009 Liwosz T. , Rogowski J., Kruczyk M., Rajner M., Kurka W.(2012). Wyrównanie kontrolne obserwacji satelitarnych GNSS wykonanych na punktach ASG-EUPOS, EUREF-POL, EUVN, POLREF i osnowy I klasy wraz z ocena wyników. Katedra Geodezji i Astronomii Geodezyjnej Wydział

Open access