Search Results

You are looking at 1 - 8 of 8 items for :

  • Artificial Intelligence x
Clear All
Open access

Pawel Wojciechowski, Wojciech Frohmberg, Michal Kierzynka, Piotr Zurkowski and Jacek Blazewicz

nucleotide reads, Bulletin of the Polish Academy of Sciences Technical Sciences , 61 , 4, 2013, 989–992. [7] Holtgrewe, M., Mason – a read simulator for second generation sequencing data, Technical Report Institut für Mathematik und Informatik, Freie Universität Berlin , TR-B-10-06, 2010. [8] Holtgrewe, M., Emde, A.-K., Weese, D., Reinert, K., A Novel And Well-Defined Benchmarking Method For Second Generation Read Mapping BMC Bioinformatics , 12 , 210, 2011. [9] Kierzynka, M., GPU-accelerated graph construction for the whole genome assembly, Phd

Open access

Daniel Eth, Juan-Carlos Foust and Brandon Whale

Tripp, S. and Grueber, M. 2011. Economic Impact of the Human Genome Project. Battelle Memorial Institute. Available electronically at http://battelle.org/docs/default-documentlibrary/economic_impact_of_the_human_genome_project.pdf 2045 Initiative. 2013. 2045 Initiative. Available electronically at http://2045.com

Open access

Jacek Blazewicz, Wojciech Frohmberg, Piotr Gawron, Marta Kasprzak, Michal Kierzynka, Aleksandra Swiercz and Pawel Wojciechowski

References [1] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications, Springer-Verlag (2007). [2] J. Blazewicz, M. Bryja, M. Figlerowicz, P. Gawron, M. Kasprzak, E. Kirton, D. Platt, J. Przybytek, A. Swiercz, and L. Szajkowski, Whole genome assembly from 454 sequencing output via modied DNA graph concept, Computational Biology and Chemistry 33 (2009) 224{230. [3] J. Blazewicz, P. Formanowicz, M. Kasprzak, W.T. Markiewicz, and A. Swiercz, Tabu search algorithm for DNA sequencing by

Open access

Szymon Wasik

, Mobile, Multimedia, Educational and Serious Games (CGAMES), pages 1{7, July 2014. [60] Tomita, Hashimoto, Takahashi, Shimizu, Matsuzaki, Miyoshi, Saito, Tanida, Yugi, Venter, and Hutchison. E-CELL: Software environment for whole cell simulation. Genome Inform Ser Workshop Genome Inform, 8:147{155, 1997. [61] Tyagi M., Hashimoto K., Shoemaker B. A., Wuchty S., and Panchenko A. R. Large-scale mapping of human protein interactome using structural complexes. EMBO reports, 13(3):266{271, 2012. [62] Van Pelt C. and Sorokin A

Open access

Marta Szachniuk

, Springer, New York, 2016. [54] Wiedemann J., Zok T., Milostan M., Szachniuk M., LCS-TA to identify similar fragments in RNA 3D structures, BMC Bioinformatics , 18 , 2017, 456. [55] Wojciechowski P., Frohmberg W., Kierzynka M., Zurkowski P., Blazewicz J., GMAPSEQ– a new method for mapping reads to a reference genome, Foundations of Computing and Decision Sciences , 41 , 2016, 123-142. [56] wwPDB consortium, Protein Data Bank: the single global archive for 3D macromolecular structure data, Nucleic Acids Research , 47 , 2019, D520–D528. [57

Open access

Oleg Uzhga-Rebrov and Galina Kuleshova

Problems of Fuzzy Clustering of Microarray Data

Microarray technology has been the leading research direction in medicine, pharmacology, genome studies and other related areas over the past years. This technology enables researches to simultaneously study activity expression of tens of thousands of genes. After the experimental data have been processed, arrays of numerical values of gene expressions are obtained that are the basis for receiving relevant information and new knowledge. This paper briefly overviews the basics of microarray technology as well as task classes that could be solved using microarray data. The existing approaches to clustering gene expression sets are discussed. It is shown that the fuzzy c-means clustering method appears the most appropriate for that purpose. Due to that, the problem of choosing an optimal size of fuzziness parameter arises. Three widespread techniques for solving the problem are considered and their comparative analysis is provided.

Open access

Agris Nikitenko, Aleksis Liekna, Martins Ekmanis, Guntis Kulikovskis and Ilze Andersone

-Gaussian-Merging Approach towards Genome Segmentation for Copy Number Analysis, World Academy of Science, Engineering and Technology, 2009, 54p. [7] A.W.Stroupe, M.C.Martin, T.Balch Distributed Sensor Fusion for Object Position Estimation by Multi-Robot Systems, Proceedings of ICRA IEEE vol.2., 2001, pp 1092 - 1098 [8] S.Tennina, M. Valletta, F. Santucci, M.D.Renzo, F. Graziosi, R.Minutolo, Entity Localization and Tracking: A Sensor Fusion-Based Mechanism in WSNs, Proceedings of IEEE 13th International Conference on HPCC, 2011, pp 983 - 988

Open access

Arnis Kirshners and Arkady Borisov

-168. S. Ignacimuthu , Basic Bioinformatics. United Kingdom: Alpha Science International Ltd., 2004, 206 p. M. F. Ramoni, P. Sebastiani, I. S. Kohane , Cluster analysis of gene expression dynamics. Proc. National Acad. Sci. USA, Vol.99, N14, 2002, pp. 9121-9126. P. N. Tan, M. Steinbach, V. Kumar , Introduction to Data Mining. Boston: Addison-Wesley, 2006, 769 p. M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein , Cluster analysis and display of genome-wide expression patterns. Proc