Search Results

You are looking at 1 - 10 of 21 items for :

  • Technical and Applied Physics x
Clear All
Open access

I. Barmina, R. Valdmanis, M. Zake, H. Kalis, M. Marinaki and U. Strautins

REFERENCES 1. Gupta, A.K., Lilley, D.G., & Syred, N. (1984). Swirl flows. Abacus Press UK , 588. 2. Sami, M., Annamalai, K., Woldridge, M. (2001). Cofiring of coal and biomass fuel blends. Prog. Energy Combustion Sci. 27 , 171–214. 3. Lawton, J., Weinberg, F.J. (1969). Electric aspects of combustion. Clarenton Press , 336–340. 4. Colannino, J. (2012). Electrodynamic combustion control, TM technology. A Clear Sign White Paper, ClearSign Combustion Corporation , Seattle. Available at www.clearsign-combustion.com 5. Swaminathan, S

Open access

I. Barmina, A. Lickrastina, M. Zake, A. Arshanitsa, V. Solodovnik and G. Telysheva

References 1. Klass, D. L. (2004). Biomass for Renewable Energy and Fuels. Encyclopedia of Energy 1, Elsevier Inc., 193-212. 2. Nussbaumer, T. (2008). Biomass Combustion in Europe. Overview on Technologies and Regulations, Final Report 08-03, New York State Energy Research and Development Authority, NYSERDA, 97. http://www.nyserda.org/programs/environment/emep/Report%2008-03%20-%20Biomass%20Combustion%20in%20Europe-complete-after%20corrections.pdf 3. Vasilev, S., Baxter, D., Andersen, L.K. & Vasileva

Open access

I. Barmina, R. Valdmanis and M. Zaķe

References 1. Gupta, A.K., Lilley, D.G., & Syred, N. (1984). Swirl Flows. UK: Abacus Press. 2. Meier, W., Duan, X.R., & Weigand, P. (2006). Investigations of swirl flames in a gas turbine model combustor: Turbulence-chemistry interactions. Combustion and Flame, 144, 225-236. 3. Külsheimer, C., & Büchner, H. (2002). Combustion dynamics of turbulent swirling flames, Combustion and Flame, 131, 70-84. 4. Syred, N., & Beer, J.M. (1974). Combustion in swirling flows: A review. Combustion and Flame, 23

Open access

M. Zaķe, I. Barmina, V. Krishko, M. Gedrovics and A. Desņickis

(Oklahoma, Tulsa) http://www.primenergy.com/reference_BioMassFiring.htm Chunyang, Wu (2006). Fuel-NO x Formation during Low-Grade Fuel Combustion in a Swirling-Flow Burner. PhD Theses , Brigham Young University, 1-230. Drennan, S. (1982). First co-firing gas burner optimized on computer reduces particulate emissions 24%, saves $0.13/MMBtu. Journal Articles by Fluent Soft Users , 1-4. Babu, S. P. (2001). Role of Natural Gas in Promoting Bioenergy as a Component of the Sustainable Energy

Open access

I. Barmina, A. Līckrastiņa, J. Valdmanis, R. Valdmanis, M. Zaķe, A. Arshanitsa, G. Telysheva and V. Solodovnik

, J., Shuttleworth, P., Deswarte, F., & Wilson, A. (2008). Microwave processing as a green and energy efficient technology of energy and chemicals from biomass and energy crops. Aspects of Applied Biology , 90 , 277-282. 10. Barmina, I., Cipijs, A., Līckrastiņa, A., Valdmanis, J. Valdmanis, R., Purmalis, M., & Zake, M. (2011). Renewable Fuel Gasification and Combustion Control by Applied AC Electric Field. In: Proceedings of 8th International Pamir Conference on Fundamental and Applied MHD , 2, 843-847. 11. Friedl, A., Padouvas, E

Open access

M. Abricka, I. Barmina, R. Valdmanis and M. Zake

References 1. Gupta, A.K., Lilley, D.G., & Syred, N. (1984). Swirl Flows. Abacus Press UK), 588 p. 2. Meier, W., Duan, X.R., & Weigand, P. (2006). Investigations of swirl flames in a gas turbine model combustor: turbulence-chemistry interactions. Combustion and Flame, 144, 225-236. 3. Külsheimer, C., & Büchner, H. (2002). Combustion dynamics of turbulent swirling flames. Combustion and Flame, 131, 70-84. 4. Driscoll, J. F., & Temme, J. (2011). Role of swirl in flame stabilization. In: 49thAIAA

Open access

J. Kalnacs, R. Bendere, A. Murasovs, D. Arina, A. Antipovs, A. Kalnacs and L. Sprince

REFERENCES 1. Demirbas, A. (2004). Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci., 30 (2), 219–230. 2. Koppmann, R., Von Czapiewski, K., & Reid, J.S. (2005). A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds and nitrogen containing compounds. Atmos. Chem. Phys. Discuss. 5 , 10455–10516. 3. Health Inspection ( in Latvian ). (n.d.) Available at http

Open access

I. Kudrenickis and G. Klavs

energy production and waste disposal. Renewable Energy & Power Quality Journal (RE&PQJ). 10, paper No.414 (4 pages), http://www.icrepq.com/RE&PQJ-10-5.html 10. Kalnačs J. et al. (2011). Metāna (CH4) un slāpekļa oksīda (N20) emisiju faktoru noteikšana cietajiem biomasas kurināmajiem sadalījumā pa kurināmā veidiem, kā arī sadalījumā pa sadedzināšanas iekārtām, pētījuma - publiskā iepirkuma atskaite ( Methane (CH4) and nitrogen oxide (N2O) emission factor determination for solid biomass fuels broken down by type of fuel and combustion equipment), Rīga

Open access

B. Aliyarov, A. Mergalimova and U. Zhalmagambetova

electrification of Kazakhstan (vol. 1). Almaty: Nauka. 6. Aliyarov, A.B., Aliyarov, B.K., & Aliayrova, M.B. (2016). Supply of thermal energy in Kazakhstan (features, experience, problems) . Almaty: LEM. 7. Karpenko, E.I., Messerle, V.E., & Konokhov, N.M. (2010). Plasma-Energy technologies of coal use for effective replacement of fuel oil and natural gas in the fuel balance of TPPs. Thermal Energy , 10 , 53–60. 8. Messerle, A. V., Messerle, E., & Ustimenko, A. B. (2017). Plasma thermochemical preparation for combustion of pulverized coal. High Temperature

Open access

A. Prohorenko and P. Dumenko

REFERENCES 1. Vyrubov, D. N., Ivashchenko, N. A. & Ivin, V. I. (1983). Internal combustion engines. Theory of piston and combined engines: Workbook for higher technical educational establishments . M.: Machine-building. 2. Prokhorenko, A. A. (2014). Automatic management of internal combustion engines (tuition manual) . Kharkiv: Pidruchnyk NTU KhPI. 3. Krutov, V.I. (1989) Automatic management and control of internal combustion engines . M.: Machine-building. 4. Diesel engine management systems. (2004). M.: JSC “Magazine “Za rulyom