Search Results

You are looking at 1 - 4 of 4 items for :

  • Theoretical and Mathematical Physics x
Clear All
Open access

Mihai Lungu, Raluca Giugiulan, Antoanetta Lungu, Madalin Bunoiu and Adrian Neculae


This paper investigates the possibility to improve the filtering process of flue gas by separation of suspended nanoparticle using dielectrophoresis. The study focuses on the particles having an average radius of about 50-150 nm, that cannot be filtrated by classical techniques but have a harmful effect for environment and human health. The size distribution nanoparticles collected from the flue gas filters of a hazardous waste incinerator plant were evaluated. Based on obtained experimental data and a proposed mathematical model, the concentration distribution of nanoparticle suspended in flue gas inside a microfluidic separation device was analyzed by numerical simulations, using the finite element method. The performances of the device were described in terms of three new specific quantities related to the separation process, namely Recovery, Purity and Separation Efficiency. The simulations could provide the optimal values of control parameters for separation process, and aim to be a useful tool in designing microfluidic devices for separating nanoparticle from combustion gases.

Open access

Alexander Borisoff Kazakoff and Boycho Ivanov Marinov

References [1] Marinov, B., H. Hristov. Links Dimension Optimization in a Three Mass System of Multi Cylinder Internal Combustion Engine. Archives of Transport, 13 (2001), No. 1, 39-52. [2] Marinov, B., H. Hristov, G. Vukov. Link Dimension Approach to a Two Mass System of Multi Cylinder Internal Combustion Engine. Mechanics of Ma- chines, 28 (1999), No. 4, 50-55 (In Bulgarian). [3] Marinov, B. On the Design of Power Transmission Line of a Ship. Archives of Transport, 14 (2002), No. 4, 53-70. [4

Open access

M.K. Alyzhanov, M.R. Sikhimbayev, S.B. Kuzembayev, K.T. Sherov, D.R. Sikhimbayeva, T.A. Khanov, T.B. Kurmangaliyev, D.E. Elemes, B.S. Donenbayev, M.M. Musaev and T.M. Buzauova

of Concentrated Dispersion Mediums Inshift Flows, Chissa - 93, Praga, 1993. [6] ALYZHANOV, M. K. The Moisture in the Pulsatile Mode, Proceedings of the University of Karaganda, KSTU, 2004, No.1, 52-54. [7] LYKOV, A. V., P. S. KUTS, L. S. SLOBODKIN. An Approximate Method for Calculating the Kinetics of the Drying Process. Journal of Engineering Physics, 8 (1967), No. 5, 112-119. [8] VYRUBOV, D. N., ET AL. The Internal Combustion Engines, Theory Piston and Combined Engines, Moscow, Mashinostroenie, 1983

Open access

Ivanka Zheleva

Detoxication of Effluent Gases From Sulfur Dioxide. Chem. Eng. Sci., 43 (1988), No. 8, 2061-2066. [15] Eigenberger, G., U. Nieken. Catalytic Combustion with Periodic Flow Re- versal. Chem. Eng. Sci., 43 (1988), No. 8, 2109-2115. [16] Sapundzhiev, Chr., G. Grozev, D. Elenkov. Non-steady-state Catalytic Decon- tamination of Waste Gases. Chem Eng. & Technol., 14 (1991), No. 3, 209-212. [17] Bobrova, L. N., E. M. Slavinskaya, A. S. Noskov, Yu. Sh. Matros. Unsteady-state Performance of NOx Catalytic Reduction by NH3. Reaction