Search Results

You are looking at 1 - 10 of 241 items for :

  • Chemical Engineering x
Clear All
Open access

Janusz Lasek, Radosław Lajnert, Krzysztof Głód and Jarosław Zuwała

References Bequette B.W., 2003. Process control: Modeling, design, and simulation, Prentice Hall. de Mello L.F., Gobbo R., Moure G.T., Miracca I., 2013. Oxy-combustion technology development for Fluid Catalytic Crackers (FCC) - large pilot scale demonstration. Energy Procedia, 37, 7815-7824. DOI: 10.1016/j.egypro.2013.06.562. Duan L., Sun H., Zhao C., Zhou W., Chen X., 2014. Coal combustion characteristics on an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle. Fuel, 127, 47-51. DOI: 10.1016/j.fuel.2013

Open access

Aneta Magdziarz, Małgorzata Wilk and Monika Zajemska

References Adamczuk M., Radomiak H., 2010. The use of computer programs for the numerical modelling of combustion process and gas dynamics in heating furnaces. Archivum Combustionis , 30, 4, 451-458. Adamczuk M., Szecówka L., Radomiak H., 2009. Applied of numerical methods to environmental protection. Archiwum Spalania , 9, 13-23 (in Polish). Barneto A.G., Carmona J.A., Conesa Ferrer J.A., Diaz Blanco M.J., 2010. Kinetic study on the thermal degradation of a biomass and its

Open access

Wojciech Moroń, Krzysztof Czajka, Wiesław Ferens, Konrad Babul, Arkadiusz Szydełko and Wiesław Rybak

References Andersson K., Normann F., Johnsson F., Leckner C., 2008. NO emission during oxy fuel combustion of lignite. Ind Eng Chem Res. , 47, 1835 - 1845. DOI: 10.1021/ie0711832. Buhre B.J.P., Elliott L.K., Sheng C.D., Gupta R.P., Wall T.F., 2005. Oxy-fuel combustion technology for coalfired power generation. Prog. Energy Combust. Sci. , 31, 283-307. DOI: 10.1016/j.pecs.2005.07.001. Croiset E., Thambimuthu K.V., 2001. NOx and SO 2 emission from O 2 /CO 2 recycled coal combustion. Fuel , 80, 2117

Open access

Agnieszka Kijo-Kleczkowska

References Gajewski W., Kijo-Kleczkowska A., Leszczyński J.: Analysis of cyclic combustion of solid fuels. Fuel 88 (2009), 221-234. Atesok G., Boylu F., Sikeci A. A., Dincer H.: The effect of coal properties on the viscosity of coal-water slurries. Fuel 81 (2002), 1855-1858. Boylu F., Dincer H., Atesok G.: Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water. Fuel Processing Technology (2004), 241

Open access

Nora Turkienė, Aušra Zigmontienė, Kęstutis Buinevičius and Raminta Plečkaitienė

References Cartmell E., Gostelow P., Riddel-Black D., Simms N., Oakey J., Morris J., Jeffrey P., Howsam P., Pollard J.S., 2006. Biosolids - a fuel or a waste? An integrated appraisal of five co-combustion scenarios with policy analysis. Env. Sci. Technol. , 40, 649-658. DOI: 10.1021/es052181g. Buinevičius K. 2009. Pollutant emissions from the combustion of bone meal studies. Žemės ūkio inžinerija , 41, 112-125 (in Lithuanian). Čepanko V., Baltrėnas P., 2009. Assessment of air pollution by burning

Open access

Maciej Mikulski, Sławomir Wierzbicki and Andrzej Piętak

-3626. DOI: 10.1016/j.fuel.2008.06.019. Börjesson P., Berglund M., 2006. Environmental systems analysis of biogas systems - Part I: Fuel-cycle emissions. Biomass Bioenergy, 30, 469-485. DOI: 10.1016/j.biombioe.2005.11.014. Budzianowski W.M., 2012. Sustainable biogas energy in Poland: Prospects and challenges. Renewable Sustainable Energy Rev., 16, 342-349. DOI: 10.1016/j.rser.2011.07.161. Carlucci P., Ficarella A., Laforgia D., 2003. Effects of pilot injection parameters on combustion for common rail diesel engines. SAE

Open access

Małgorzata Olek, Stanisław Kandefer, Wiesław Kaniowski, Witold Żukowski and Jerzy Baron

Literature Cited 1. Klank, M. (2010). The future of coal – a new look at its use, Energy Policy, 10(1), 41–49 (in Polish). 2. Kandefer, S. (1989). Fluidized bed combustion of low-grade fuels and waste , Cracow: Cracow University of Technology Publisher, (in Polish). 3. Baron, J., Bulewicz, E.M., Kandefer, S., Pilawska, M. & Żukowski, W. (2006). Environmentally-friendly Use of Waste Biomass in Protected Areas. Environ. Prot. Eng. 32 (1), 35–40. 4. Porzuczek, J. (2012). Optimization of the fluidized bed boilers operation in nonstationary states. Cracow

Open access

Monika Kosowska-Golachowska, Agnieszka Kijo-Kleczkowska, Adam Luckos, Krzysztof Wolski and Tomasz Musiał

References [1] N atunen M., J äntti T., G oral D., N uortimo K.: First Operating Experiences of 55 MWe Konin and 205 MW e Połaniec CF Boilers Firing 100% Biomass. PowerGen Europe 2013. [2] K osowska -G olachowska M., L uckos A., K los K., M usial T.: Oxy-combustion of different coals in a circulating fluidized bed. In: Proc. 10th Int. Conf. Circulating Fluidized Beds and Fluidization Technology – CFB-10 (T.M. Knowlton, Ed.), 481–488, Sun River, May 1–5, 2011. [3] C hen Y., M ori S., P an W.: Studying the mechanisms of ignition

Open access

Jarosław Krzywański, Rafał Rajczyk and Wojciech Nowak

References Abelha P., Gulyurtlu I., Crujeira T., Cabrita I., 2008. Co-combustion of several biomass materials with bituminous coal in a circulating fluidized bed combustor. 9th International Conference on Circulating Fluidized Beds in conjunction with the 4th International VGB Workshop Operating Experience with Fluidized Bed Firing Systems, Hamburg, Germany, 2008. Armesto L., Bahillo A., Veijonen K., Cabanillas A., Otero J., 2002. Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass Bioenerg., 23, 171-179. DOI

Open access

Bernhard Peters and Joanna Smuła-Ostaszewska

References Aho M., Silvennoinen J, 2004. Preventing chlorine deposition on heat transfer surfaces with aluminium-silicon rich biomass residue and additive. Fuel , 83, 1299-1305. DOI: 10.1016/j.fuel.2004.01.011. Aho M., Ferrer E., 2005. Importance of coal ash composition in protecting the boiler against chlorine deposition during combustion of chlorine-rich biomass. Fuel , 84, 201-212. DOI: 10.1016/j.fuel.2004.08.022. Chapman P., 1996. CFD enhances waste combustion design and modification. Combustion