Search Results

You are looking at 1 - 6 of 6 items for :

  • T regulatory cell x
  • Applied Mathematics x
Clear All
Open access

Krzysztof Fujarewicz

Wolkenhauer, O. (2004). Optimal sampling time selection for parameter estimation in dynamic pathway modeling, BioSystems   75 (1-3): 43-55. Lee, E., Boone, D., Chai, S., Libby, S., Chien, M., Lodolce, J. and Ma, A. (2000). Failure to regulate tnf-induced nf-κb and cell death responses in a20-deficient mice, Science   289 (5488): 2350-2354. Lipniacki, T., Paszek, P., Brasier, A. R., Luxon, B. and Kimmel, M. (2004). Mathematical model of nf-κb regulatory module, Journal of Theoretical Biology   228 (2): 195

Open access

Jarosław Śmieja

interferon-beta signaling pathway, Procedings of the 6th IFAC Symposium on Modelling and Control in Biomedical Systems MCBMS'06, Reims, France , pp. 423-428. Taniguchi T. and A. Takaoka (2001). A weak signal for strong responses: Interferon-α/β revisited, Nature Reviews Molecular Cell Biology 2: 378-386. Tyson J.J., K.C. Chen and B. Novak (2003). Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell, Current Opinion in Cell Biology 15: 221

Open access

H.A. Kruthika, Arun D. Mahindrakar and Ramkrishna Pasumarthy

(10): 1667–1694. Saleem, M. and Agrawal, T. (2012). Complex dynamics in a mathematical model of tumor growth with time delays in the cell proliferation, International Journal of Scientific and Research Publications 2 (6): 1–7. Sharma, A., Kohar, V., Shrimali, M. and Sinha, S. (2014). Realizing logic gates with time-delayed synthetic genetic networks, Nonlinear Dynamics 76 (1): 431–439.

Open access

Tomasz Zok, Maciej Antczak, Martin Riedel, David Nebel, Thomas Villmann, Piotr Lukasiak, Jacek Blazewicz and Marta Szachniuk

-358. Villmann, T. and Haase, S. (2011). Divergence based vector quantization, Neural Computation 23(5): 1343-1392. Volkovich, Z., Barzily, Z. and Morozensky, L. (2008). A statistical model of cluster stability, Pattern Recognition 41(7): 2174-2188. Weber, G.-W., Defterli, O., Gök, S.Z.A. and Kropat, E. (2011). Modeling, inference and optimization of regulatory networks based on time series data, European Journal of Operational Research 211(1): 1-14. Zok, T., Popenda, M. and Szachniuk, M. (2014). MCQ4Structures to compute

Open access

Sandip Banerjee

effect of time delays on the dynamics of avascular tumor growth, Mathematical Biosciences 144 (2): 83-117. Curti B. D., Ochoa A. C., Urba W. J., Alvord W. G., Kopp W. C., Powers G., Hawk C., Creekmore S. P., Gause B. L., Janik J. E., Holmlund J. T., Kremers P., Fenton R. G., Miller L., Sznol M., II J. W. S., Sharfman W. H. and Longo D. L. (1996). Influence of interleukin-2 regimens on circulating populations of lymphocytes after adoptive transfer of anti cd 3-stimulated t cells: Results from a phase i trial in cancer patients, Journal of

Open access

Víctor M. Pérez-García, Susan Fitzpatrick, Luis A. Pérez-Romasanta, Milica Pesic, Philippe Schucht, Estanislao Arana and Pilar Sánchez-Gómez

, falsification of underlying biological hypotheses and quantitative description of relationships between different components of a system. Mathematical models are limited because they cannot replace experimental results obtained by other biomedical models such as cell lines, research animals or clinical trials. Their advantage over experimentation is in providing a broader picture that may help novel findings and even solutions for some cancer-related problems. Moreover, they could improve clinical care of patients by increasing the use of tools from applied mathematics and