Search Results

1 - 10 of 47 items :

  • T regulatory cell x
  • Basic Medical Science x
  • Clinical Medicine, other x
  • Clinical Medicine x
Clear All

. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008;133:775 - 787. 26. Numasaki M, Fukushi J-I, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H, Lotze PJ. Interleukin-17 promotes angiogenesis and tumor growth. Blood 2003;101:2620-2627. 27. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer 2010;127:759-767. 28. Li MO, Sanjabi S, Flavell R. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity

References 1. Tsao BP. Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol. 2004; 16:513-21. 10.1097/01.bor.0000132648.62680.81 2. Zhang H, Yang P, Zhou H, Meng Q, Huang X: Involvement of Foxp3-expressing CD4+ CD25+ regulatory T cells in the development of tolerance induced by transforming growth factor-beta2-treated antigen-presenting cells. Immunology. 2008; 124: 304-14. 3. Namba K, Kitaichi N, Nishida T, Taylor AW. Induction of regulatory T cells by the immunomodulating cytokines alpha-melanocyte-stimulating hormone and transforming

-483. 20. Chung Y., S. H. Chang, G. J. Martinez et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. – Immunity, 30, 2009, № 4, 576-587. 21. Chen W. J., W. Jin, N. Hardegen et al. Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. – J Exp Med, 198, 2003, № 12, 1875-1886. 22. Zheng S. G., J. Wang, P. Wang et al. IL-2 Is Essential for TGF-β to Convert Naive CD4+CD25− Cells to CD25+Foxp3+ Regulatory T Cells and for Expansion of These Cells. – J Immunol, 178

:837-845. 10.1095/biolreprod.103.021147 21. Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 2007; 448:1015-21. 22. Lei T, Jacob S, Ajil-Zaraa I, Dubuisson JB, Irion O, Jaconi M, Feki A. Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell Res. 2007; 17:682-8. 10.1038/cr.2007.61 23. Swistowski A, Peng J, Han Y, Swistowska AM, Rao MS, Zeng X. Xeno-free defined

References 1. Calderwood SK, Mambula SS, Gray PJ Jr. Extracellular heat shock proteins in cell signaling and immunity. Ann NY Acad Sci. 2007; 1113:28-39. 2. V, Hauet-Broere F, Berlo S, Paul L, van der Zee R, de Kleer I,et al. Stress proteins as inducers and targets of regulatory T cells in arthritis. Int Rev Immunol. 2005; 24:181-97. 10.1080/08830180590934958 3. Pockley AG, Muthana M, Calderwood SK. The dual immunoregulatory roles of stress proteins. Trends Biochem Sci. 2008; 33:71-9. 4. Gupta RS, Ramachandra NB, Bowes T, Singh B. Unusual cellular disposition of

Genet. 1995; 11:101-5. 10.1016/S0168-9525(00)89010-1 5. Hall PA, Meek D, Lane DP. p53-integrating the complexity. J Pathol. 1996; 180:1-5. 10.1002/(SICI)1096-9896(199609)180:1<1::AID-PATH712>3.0.CO;2-U 6. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994; 9:1799-805. 7. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993; 366:704-7. 8. Mork J, Lie AK

.Update Cancer Ther 2007; 2: 61-65. 14. Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 2008; 205: 825-39. 15. Marin-Acevedo JA, Soyano AE, Dholaria B, et al. Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol 2018; 11: 8. 16. Amedei A, Benagiano M, della Bella C, et al. Novel immuno-therapeutic strategies of gastric cancer treatment. J Biomed Biotechnol 2011; 2011: 437348. 17. Yoshikawa T, Tsuburaya A, Kobayashi O et al. Plasma concentrations of VEGF and bFGF in

References 1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin. 2008; 58: 71-96. 2. Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, Fujii H. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer. 2008; 122:2286-93. 3. Panani AD. Cytogenetic and molecular aspects of gastric cancer: clinical implications. Cancer Lett. 2008; 266:99-115. 4. Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ. CD40/ CD154 interactions

-206. 12. Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS. Defining the CREB regulon: a genomewide analysis of transcription factor regulatory regions. Cell. 2004; 119:1041-54. 13. Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: The therapeutic potential of targeting FoxO proteins. Trends Mol Med. 2008; 14:219-27. 14. Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity

] that GFAP was detected in NPCs derived from hESCs using a feeder-free method. Human neural stem cells isolated from fetal neural tissue also express low levels of GFAP mRNA and little or no S100β [ 46 ]. By contrast, the expression of TLX, also known as NR2E1, was significantly low in feeder-free derived NPCs that exhibited a high level of expression of GFAP when compared with NPCs derived by the EB method. TLX is an orphan nuclear receptor that plays an essential regulatory role in maintaining an undifferentiated state, proliferation, and suppresses astrocyte