Search Results

You are looking at 1 - 6 of 6 items for :

  • Staphylococcus epidermidis x
  • Basic Medical Science, other x
Clear All
Open access

Urška Šunta, Miha Žitnik, Noemi Concetta Finocchiaro, Tjaša Griessler Bulc and Karmen Godič Torkar

university hospital. Antimicrob Agents Chemother 2006;50:4198–201. doi: 10.1128/AAC.00663-06 29. Acton DS, Tempelmans Plat-Sinnige MJ, van Wamel W, de Groot N, van Belkum A. Intestinal carriage of Staphylococcus aureus : how does its frequency compare with that of nasal carriage and what is its clinical impact? Eur J Clin Microbiol Infect Dis 2009;28:115–27. 30. Akinkunmi EO, Adeyemi OI, Igbeneghu OA, Olaniyan EO, Omonisi AE, Lamikanra A. The pathogenicity of Staphylococcus epidermidis on the intestinal organs of

Open access

Francesco Casalinuovo, Donatella Brindisi, Paola Rippa, Carlotta Ceniti, Lucia Ciambrone, Rosanna Musarella and Nicola Costanzo

REFERENCES 1. Becker, K., Keller, B., von Eiff, C., Brück, M., Lubritz, G., Etienne, J., Peters, G. (2001). Enterotoxigenic potential of Staphylococcus intermedius. Appl Environ Microbiol. 67, 5551–5557. PMid:11722906 PMCid:PMC93343 2. Catarci, C. (2005). The world tuna industry—an analysis of imports and prices, and of their combined impact on catches and tuna fishing capacity. In: W. Bayliff, J. I. Leiva Moreno, J. Majkowski (Eds.), Management of tuna fishing capacity: Conservation and socio

Open access

Parima Hirunwiwatkul, Kanitta Wachirasereechai, Mayuree Khantipong and Anan Chongthaleong

fluoroquinolones. Surv Ophthalmol. 2004; 49 (Suppl 2):S79-83. 13. Bal AM, Gould IM. Antibiotic resistance in Staphylococcus aureus and its relevance in therapy. Expert Opinion on Pharmacotherapy. 2005; 6:2257-69. 14. Kirby WMM. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science. 1944; 99:452. 15. Thornsberry C. The development of antimicrobial resistance in staphylococci. J Antimicrob Chemother. 1998; 21 Suppl C:9-17. 16. Barber M. Methicillin

Open access

Nikolina Velizarova Rusenova and Anton Georgiev Rusenov

.1099/ijs.0.63413-0 PMid:16014483 3. Otto, M. (2013). Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: Staphylococcal commensal species such as Staphylococcus epidermidis being recognized as important sources of genes promoting MRSA colonization and virulence. Bioessays 5, 4-11. PMid:23165978 PMCid:PMC3755491 4. Harrison, E.M., Weinert, L.A, Holden, M.T.G., Welch, J.J., Wilson, K., Morgan, F.J.E., Harris, S.R., Loeffler, A., Boag, A.K., Peacock, S.J., Paterson, G

Open access

Suphannee Thanyaphoo and Jasadee Kaewsrichan

: optimization of release properties. J Pharm Pharmacol. 1994; 46:718-24. 14. Nijhof MW, Fleer A, Hardus K, Vogely HC, Schouls LM, Verbout AJ, et al. Tobramycin containing bone cement and systemic cefazolin in a one-stage revision. Treatment of infection in a rabbit model. J Biomed Mater Res. 2001; 58:747-53. 15. Mayberry-Carson KJ, Tober-Meyer B, Lambe DW, Jr. Costerton JW. Osteomyelitis experimentally induced with Bacteroides thetaiotaomicron and Staphylococcus epidermidis. Influence of a foreign-body implant. Clin Orthopaedics. 1992; 280

Open access

Pawana Panomket

Bacterial biofilms are produced by planktonic cells. Living bacteria adhere and coat the surface. The aggregation of living cells can divide bacterial cells and produce microcolonies on adherent surfaces [ 15 ]. The attachment using their own secretions is called biofilm formation. These sessile biofilm communities have antimicrobial resistance [ 16 ]. Several microorganisms can produce biofilms and cause disease, including Escherichia coli , Pseudomonas aeruginosa , Burkholderia cepacia , Staphylococcus aureus , S. epidermidis , and Enterococcus spp. [ 16