Search Results

1 - 4 of 4 items :

  • Spark plasma sintering x
  • Materials Sciences x
  • Materials Sciences, other x
Clear All
Density, Microstructure, Strength and Fractography of Spark Plasma and Conventionally Sintered Mn Steels

REFERENCES [1] Hryha, E., Nyborg, L., Dudrova, E., Bengtsson, S. In: Proc. Euro PM2009 - Sintered Steels 1 – Composition. International powder metallurgy congress et exhibition. Copenhagen, 12.-14.10.2009. Vol. 1. Shrewsbury: EPMA, 2009, p. 17 [2] Taylor, GF.: US Patent No. 1,896,854, 1933 [3] Taylor, GF.: US Patent No. 1,896,853, 1933 [4] Crèmer, GD.: US Patent No. 2,355,954, 1944 [5] Lenel, VF.: JOM – the Journal of The Minerals, Metals & Materials Society (TMS), Trans. AIME, vol. 7, 1955, no. 1, p. 158 [6] Song, X., Liu, X

Open access
Applying “Spark Plasma Sintering” Technology to Enhance the Resistance to Contact Fatigue of Sintered Steel Based on Astaloy CRL

Abstract

The article deals with the effect of porosity on the contact fatigue of sintered material type Astaloy CrL with 0.3 and 0.4% C. Sets of samples were used with densities beginning from the value of 7000 kg.m−3 to the value of almost 7859 kg.m−3 which represents almost zero porosity (compact material). It has been found out that the increase of compacting pressure applied simultaneously with temperature results in the reduction of porosity from the value of 9.10% to 0.0005% and increase in hardness from 145 to 193 HV10, depending on the carbon content. Logically there is also an increase in the fatigue life by the contact fatigue tests for the value of 50×106 cycles from the value of 900 MPa to 1150 MPa for samples with 0.3% of C and from 900 MPa to 1300 MPa for samples with 0.4% C. These investigations were also carried out in the past, but to achieve the reduction of porosity, different technonologies were used at each level such as double pressing, hot pressing, saturation, hot forging, etc. In this case, the single technology of “spark plasma sintering” making use of compacting at high temperatures is capable to continuously reduce porosity to zero.

Open access
Synthesis, sintering, specific heat and magnetism of Eu3S4 by low-temperature CS2-gas sulfurization of Eu2O3 nanospheres

Abstract

Single-phase Eu3S4 was obtained via CS2 gas sulfurization of Eu2O3 nanospheres at 773 K for longer than 0.5 h. The primary particle size of Eu3S4 became larger than that of Eu2O3 during the sulfurization process. Pure synthetic Eu3S4 powders were unstable and transformed to EuS at 873 K under vacuum. Eu3S4 compacts were sintered in temperature range of 773 K to 1173 K and they transformed to EuS at 1473 K during spark plasma sintering. Specific heat of sintered Eu3S4 did not show an anomalous behavior in the range of 2 K to 50 K. The magnetic susceptibility of polycrystalline Eu3S4 followed a Curie-Weiss law from 2 K to 300 K. Magnetization of polycrystalline Eu3S4 was larger than that of single crystal Eu3S4 when the magnetic field was less than 3.5 kOe.

Open access
Pecularities of Gas Analysis in Al and Mg Powders

Mezbahul-Islam, Ahmad Omar Mostafa, Mamoun Medraj Hindawi: Journal of Materials, vol. 2014, Article ID 704283 http://dx.doi.org/10.1155/2014/704283 [6] Pieczonka, T., Schubert, T., Baunack, S.: Sintering Behaviour of Aluminium in Different Atmospheres [7] Chua, AS., Brochu, M., Bishop, DP.: Spark plasma sintering of prealloyed aluminium powders [8] Czerwinski, F.: JOM, May, 2004 [9] Krasovskii, PV.: Inorganic materials, vol. 50, 2014, p.1480, DOI: 10.1134/S0020168514150059 [10] Colombo, A.: Analytica Chimica Acta, vol. 81, 1976, p. 397

Open access