Search Results

1 - 3 of 3 items :

  • Silicon carbide x
  • Applied Mathematics x
Clear All
Multiplicative topological descriptors of Silicon carbide

)}{\sqrt{\frac{{{d}_{u}}+{{d}_{v}}-2}{{{d}_{u}}\cdot {{d}_{v}}}}}, \\\,\,\,\,\,GAII\left( G \right)=\prod\limits_{uv\in E\left( G \right)}{\frac{2\sqrt{{{d}_{u}}\cdot {{d}_{v}}}}{{{d}_{u}}+{{d}_{v}}}}, \\G{{A}^{a}}II\left( G \right)=\prod\limits_{uv\in E\left( G \right)}{{{\left( \frac{2\sqrt{{{d}_{u}}\cdot {{d}_{v}}}}{{{d}_{u}}+{{d}_{v}}} \right)}^{\alpha }}.} \\\end{array}$$ 2 Silicon Carbide In 1891, an American scientist discover Silicon Carbide. But now a days, we can produce silicon carbide artificially by silica and carbon. Till 1929, silicon carbide was known as the hardest

Open access
A hierarchy of hydrodynamic models for silicon carbide semiconductors

. 7. G. Lebon, D. Jou, and J. Casas-Vázquez, Understanding Non- equilibrium Thermodynamics. Springer-Verlag, 2008. 8. I. Mueller and T. Ruggeri, Rational Extended Thermodynamics. Springer-Verlag, 1998. 9. O. Muscato and V. D. Stefano, Electrothermal transport in silicon carbide semiconductors via a hydrodynamic model, SIAM J. APPL. MATH., vol. 75, no. 4, pp. 1941-1964, 2015. 10. A. Jüngel, Energy transport in semiconductor devices, Math. Comput. Model. Dyn. Syst., vol. 16, pp. 1-22, 2010. 11. G

Open access
A benchmark study of the Signed-particle Monte Carlo algorithm for the Wigner equation

, Electro-thermal behaviour of a submicron silicon diode, Semicond. Sci. Tech., vol. 28, no. 2, p. 025021, 2013. 30. O. Muscato and V. D. Stefano, Electrothermal transport in silicon carbide semiconductors via a hydrodynamic model, SIAM J. APPL. MATH., vol. 75, no. 4, pp. 1941-1964, 2015. 31. G. Mascali, A hydrodynamical model for silicon semiconductors including crystal heating, Europ. J. Appl. Math., vol. 26, pp. 477-496, 2015. 32. G. Mascali, A new formula for silicon thermal conductivity based on a hierarchy of

Open access