Search Results

1 - 2 of 2 items :

  • Silicon carbide x
  • Life Sciences x
Clear All
Multiplicative topological descriptors of Silicon carbide

)}{\sqrt{\frac{{{d}_{u}}+{{d}_{v}}-2}{{{d}_{u}}\cdot {{d}_{v}}}}}, \\\,\,\,\,\,GAII\left( G \right)=\prod\limits_{uv\in E\left( G \right)}{\frac{2\sqrt{{{d}_{u}}\cdot {{d}_{v}}}}{{{d}_{u}}+{{d}_{v}}}}, \\G{{A}^{a}}II\left( G \right)=\prod\limits_{uv\in E\left( G \right)}{{{\left( \frac{2\sqrt{{{d}_{u}}\cdot {{d}_{v}}}}{{{d}_{u}}+{{d}_{v}}} \right)}^{\alpha }}.} \\\end{array}$$ 2 Silicon Carbide In 1891, an American scientist discover Silicon Carbide. But now a days, we can produce silicon carbide artificially by silica and carbon. Till 1929, silicon carbide was known as the hardest

Open access
Long-Term Degradation of Composites Exposed to Liquid Environments in Agriculture

Abstract

Polymeric particles composites with hard inorganic particles are abrasion resistant materials which can be used in the sphere of agriculture - e.g. for functional areas in renovation or as resistant layers. Silicon carbide waste particles were used in the present experiment, replacing the primary filler with waste without significant changes in the mechanical properties. The present paper describes the effect of immersion of polymeric particles composites with epoxy matrix in liquids on selected mechanical properties. Overall, it explains the change of hardness and resistance of abrasive wear, a typical kind of wear in the sphere of agriculture.

Open access