Search Results

You are looking at 1 - 8 of 8 items for :

  • Silicon carbide x
  • Electrical Engineering x
Clear All
Open access

Nisha Kondrath and Marian Kazimierczuk

References A. M. Abou-Alfotouh, A. V. Radun, H.-R. Chang, and C. Winterhalter, "A 1 MHz hard switched silicon carbide DC/DC converter," IEEE Transactions on Power Electronics , vol. 21, no. 4, pp. 880-889, July 2006. M. Bhatnagar and B. J. Baliga, "Comparison of 6H-SiC, 3C-SiC, and Si for power devices," IEEE Transactions on Electronic Devices , vol. 40, no. 3, p. 645, Mar. 1993. C. H. Carter, Jr., L. Tang, and R. F. Davis, "Growth of single crystal boules of 6H-SiC," in 4th

Open access

Damian Bisewski, Marcin Myśliwiec, Krzysztof Górecki, Ryszard Kisiel and Janusz Zarębski

References [1] Buttay, C., Raynaud, Ch., Morel, H. (2012). Thermal Stability of Silicon Carbide Power devices. IEEE Transactions on Electron Devices, 59(3), 761−769. [2] Buttay, C., Raynaud, Ch., Morel, H., Lazar, M., Civrac, G. (2011). High-Temperature Behavior of SiC Power Devices. Proc. of 14th European Conference on Power Electronics and Applications EPE2011, 1−9. [3] Kisiel, R., Guziewicz, M., Szczepański, Z., Król, K. (2010). An Overview of Materials and Bonding Techniques for Inner Connections in SiC High

Open access

Jacek Rąbkowski and Rafał Kopacz

Abstract

This paper presents a new concept for a power electronic converter - the extended T-type (eT) inverter, which is a combination of a three-phase inverter and a three-level direct current (dc)/dc converter. The novel converter shows better performance than a comparable system composed of two converters: a T-type inverter and a boost converter. At first, the three-level dc/dc converter is able to boost the input voltage but also affects the neutral point potential. The operation principles of the eT inverter are explained and a simulation study of the SiC-based 6 kVA system is presented in this paper. Presented results show a serious reduction of the DC-link capacitors and the input inductor. Furthermore, suitable SiC power semiconductor devices are selected and power losses are estimated using Saber software in reference to a comparative T-type inverter. According to the simulations, the 50 kHz/6 kVA inverter feed from the low voltage (250 V) shows <2.5% of power losses in the suggested SiC metal oxide-semiconductor field-effect transistors (MOSFETs) and Schottky diodes. Finally, a 6 kVA laboratory model was designed, built and tested. Conducted measurements show that despite low capacitance (2 × 30 μF/450 V), the neutral point potential is balanced, and the observed efficiency of the inverter is around 96%.

Open access

Joanna Ćwirko, Robert Ćwirko and Janusz Mikołajczyk

-L. (2002), GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky contact, Appl. Phys. Lett., 81 (4655), DOI:10.1063/1.1524035. [10] Iucolano, F, Roccaforte, F., Giannazzo, F., Raineri, V. (2008), Influence of high-temperature GaN annealed surface on the electrical properties of Ni/GaN Schottky contacts, J. Appl. Phys. 104 (093706), DOI:10.1063/1.3006133. [11] Kirschman, R. (1999), Status of Silicon Carbide (SiC) as a WideBandgap Semiconductor for High Temperature Applications: A Review, High-Temperature Electronics

Open access

Ludwik Zając, Mariusz Malinowski, Sebastian Styński and Marek Jasiński

L., ROTH M.D., High temperature testing of a buck converter using silicon and silicon carbide diodes, Proc. 32nd Intersociety Energy Conversion Engineering Conference IECEC-97, Vol 1., IEEE 1997, 317-322, DOI: 10.1109/IECEC.1997.659206. [11] KAUR R., KUMAR S., Stability and dynamic characteristics analysis of DC-DC buck converter via mathematical modelling, Proc. International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), IEEE, 2015, 253-258, DOI: 10.1109/RDCAPE. 2015.7281405. [12] BABAEI E

Open access

Krzysztof Górecki and Paweł Górecki

carbide semiconductor devices. Przegląd Elektrotechniczny , 87(10), 29–32. [21] Kuball, M., Pomeroy, J.W., Simms, R., Riedel, G.J., Ji, H.F., Sarua, A., Uren, M.J., Martin, T. (2007). Thermal properties and reliability of GaN microelectronics: Sub-micron spatial and nanosecond time resolution thermography. 4th IEEE Compound Semiconductor Integrated Circuit Symposium , Portland, 135–138. [22] Zarębski, J., Górecki, K. (2007). A New Measuring Method of the Thermal Resistance of Silicon P-N Diodes. IEEE Transaction on Instrumentation and Measurement , 56

Open access

Martyna Wiciak, Paweł Twardowski and Szymon Wojciechowski

References [1] Bhattacharya D., Lane C., Lin J.T.,Machninability of silicon carbide reinforced aluminium metal matrix composite, Wear 181-183 (1995) 883-888 [2] Davim J.,Diamond tool performance in machining metal-matrix composites, Journal of Materials Processing Technology 128 (2002) 100-105 [3] El-Gallab M., Sklad M.,Machning of Al./SiC particulate metal matrix composites Part I: Tool performance, Journal of Materials Processing Technology 83 (1998) 151-158 [4] El-Gallab M., Sklad M

Open access

Natalia Znojkiewicz, Dariusz Korzeniewski and Martyna Wiciak

References [1] Aramesh M., Attia M. H., Kishawy H. A., Balazinski M.: Estimating the remaining useful tool life of worn tools under different cutting parameters: A survival life analysis during turning of titanum metal matrix composites (Ti-MMCs), CIRP Journal of Manufacturing Science and Technology, (2016), Vol. 12, p.35-43. [2] Chen J., Liu W., Deng X., Wu S.: Tool life and wear mechanism of WC-5TiC-0.5VC-8Co cemented carbides inserts when machining HT250 gray cast iron, Ceramics international, (2016), Vol. 42, p. 10037