Search Results

1 - 10 of 44 items :

  • Veterinary Medicine x
  • Biotechnology x
Clear All
Role of Mesenchymal Stem Cells—Derived Exosomes in Osteoarthritis Treatment

REFERENCES 1. Admyre, C., Grunewald, J., Thyberg, J., Gripenbäck, S., Tornling G., Eklund A., 2003: Exosomes with major histo-compatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur. Respir. J. , 22, 578—583. 2. Bruno, S., Grange, C., Deregibus, M. C., 2009: Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. , 20, 1053—1067. 3. Caby, M. P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G., Bonnerot, C., 2005: Exosomal-like vesicles are present in

Open access
Stem Cell Characteristics of Ovarian Granulosa Cells - Review

References Akagi S., Kaneyama K., Adachi N., Tsuneishi B., Matsukawa K., Watanabe S., Kubo M., Takahashi S. (2008). Bovine nuclear transfer using fresh cumulus cell nuclei and in vivo - or in vitro -matured cytoplasts. Cloning Stem Cells, 10 (1): 173-80. Batchelder C. A., Hoffert K. A., Bertolini M., Moyer A. L., Anderson G. B. (2004). Development of bovine nuclear transfer embryos cloned from follicular donor cells in sequential stages of differentiation. Reprod. Fertil. Dev., 16, p. 123

Open access
Isolation, Characterization and Differentiation Potential of Chicken Spermatogonial Stem Cell Derived Embryoid Bodies

References Aponte P.M., Soda T., Teerds K.J., Mizrak S.C., Vande Kant H.J., Derooij D.G. (2008). Propagation of bovine spermatogonial stem cells in vitro. Reproduction, 136: 543-557. Brulet P., Babinet C., Kemler R., Jacob F. (1980). Monoclonal antibodies against trophectoderm- specific markers during mouse blastocyst formation. Proc. Natl. Acad Sci. USA, 77: 4113-4117. Burt D.W. (2007). Emergence of the chicken as model organism: Implications for agriculture and biology. Poultry Sci., 86: 1460

Open access
Canine Amniotic Membrane Derived Mesenchymal Stem Cells- Potential Sources for Regenerative Medicine

References Fernandes R.A., Wenceslau C.V., Reginato A.L., Kerkis I., Miglino M. A., 2012. Derivation and characterization of progenitor stem cells from canine allantois and amniotic fluids at the third trimester of gestation.Placenta, Aug; 33(8):640-4. Kaviani A, Perry TE, Dzakovic A et al. 2001. The AF as a source of cells for fetal tissue engineering. Journal of Pediatric Surgery 36, 1662-1665. Yu S., Tajiri N., Franzese N., Franzblau M., Bae E., Platt S., Kaneko Y., Borlongan C.V, 2013. Stem cell-like dog

Open access
Effects of Cell Seeding Methods on Chondrogenic Differentiation of Rat Mesenchymal Stem Cells in Polyhydroxybutyrate/Chitosan Scaffolds

REFERENCES 1. Barry, F. P., Murphy, J. M., 2004: Review Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol , 36, 568—584. DOI: 10.1016/j.biocel.2003.11.001. 2. Bornes, T. D., Jomha, N. M., Mulet-Sierra, A., Adesida, A. B., 2016: Optimal seeding densities for in vitro chondrogenesis of two- and three-dimensional-isolated and expanded bone marrow-derived mesenchymal stromal stem cells within a porous collagen scaffold. Tissue Engn. C: Methods , 22, 208— 220. DOI: 10.1089/ten.tec.2015

Open access
5. MMP-2, TIMP-2, TAZ and MEF2a Transcript Expression in Osteogenic and Adipogenic Differentiation of Porcine Mesenchymal Stem Cells

References Arnold M.A., Kim Y., Czubryt M.P., Phan D., Mc Anally J., Qi X., Shelton J.M., Richardson J.A., Bassel-Duby R., Olson E.N. (2007). MEF2Ctranscription factor controls chondrocyte hypertrophy and bone development. Dev. Cell, 12: 377-389. Boxall S.A., Jones E. (2012). Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int., 2012: 975871. Brew K., Dinakarpandian D., Nagase H. (2000). Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim

Open access
Morphological and Anatomical Properties of the Senna Alexandrina Mill. (Cassia Angustifolia Vahl.)

Journal 1 (5016): 439-41. Duarte MR, Wolf S., 2005. Anatomical characters of the phyllode and stem of Acacia podalyriifolia A. Cunn. ex G. Don (Fabaceae). Rev Bras Farmacogn 15: 71-76. Esau, Katherine, 1983. Plant Anatomy. New Delhi: Wiley Eastern. Francino DMT, Sant’Anna-Santos BF, Silva KLF, Thadeo M, Meira RMSA, Azevedo AA 2006. Anatomia. foliar e caulinar de Chamaecrista trichopoda (Caesalpinioideae) e histoquímica do nectário floral. Planta Daninha 24: 695-705. Gerard Haiek and Stephen Tillett, 2010

Open access
Herbal Medicine Additives as Powerful Agents to Control and Prevent Avian Influenza Virus in Poultry – A Review

chemical components from herbs (in Chinese). Chin. Herbal Med. Press, Beijing. Yazdi F.F., Ghalamkari G., Toghyani M., Modaresi M., Landy N. (2014). Efficiency of Tribulus terrestris L. as an antibiotic growth promoter substitute on performance and immune responses in broiler chicks. Asian Pac. J. Trop. Dis., 4: 1014–1018. Yu J., Shi F.S., Hu S. (2015). Improved immune responses to a bivalent vaccine of Newcastle disease and avian influenza in chickens by ginseng stem-leaf saponins. Vet. Immunol. Immunopathol., 167: 147–155. Yuniwarti Y.W.E., Asmara W

Open access
Enhancement of in vitro developmental outcome of cloned goat embryos after epigenetic modulation of somatic cell-inherited nuclear genome with trichostatin A

cell nuclear transfer at the transcriptomic level; highlighting the non-random nature of oocyte-mediated reprogramming errors. BMC Genomics, 17: 16. Huan Y., Wu Z., Zhang J., Zhu J., Liu Z., Song X. (2015). Epigenetic modification agents improve gene-specific methylation reprogramming in porcine cloned embryos. PLoS One, 10 (6): e0129803. Iager A.E., Ragina N.P., Ross P.J., Beyhan Z., Cunniff K., Rodriguez R.M., Cibelli J.B. (2008). Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells, 10

Open access
Mechanism and Functions of Identified miRNAs in Poultry Skeletal Muscle Development – A Review

. Crist C.G., Montarras D., Pallafacchina G., Rocancourt D., Cumano A., Conway S.J., Buckingham M. (2009). Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc. Natl. Acad. Sci., 106: 13383–13387; https://doi.org/10.1073/pnas.0900210106 . Cui T.X., Schwartz J., Piwien-Pilipuk G., Lanning N., Rathore M., LaPensee C.R., Calinescu A.-A., Lin G., Jin H., Qin Z.S., Carter-Su C., Streeter C. (2011). C/EBPβ mediates growth hormone-regulated expression of multiple target genes. Mol. Endocrinol., 25: 681–693; https://doi.org/10.1210/me

Open access