Search Results

You are looking at 1 - 10 of 53 items for :

  • Theoretical and Mathematical Physics x
Clear All
Open access

Nikolay K. Vitanov, Amin Chabchoub and Norbert Hoffmann

-1551. [15] Akhmediev, N., V. I. Korneev. Modulation Instability and Periodic Solutions of the Nonlinear Schr¨odinger Equation. Theor. Math. Phys. (USSR), 69 (1987), 1089-1093. [16] Peregrine, D. H. Water Waves, Nonlinear Schr¨odinger Equations and Their Solutions. J. Austral. Math. Soc. B, 25 (1983), 16-43. [17] Remoissenet, M. Waves Called Solitons, Berlin, Springer, 1993. [18] Dysthe, K. B. Note on a Modification to the Nonlinear Schr¨odinger Equation for Application to Deep Water Waves. Proc. Roy. Soc. London, Ser. A, 369

Open access

Ion I. Cotăescu

References [1] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972). [2] I. I. Cotăescu, Gen. Relativity Gravitation 43, 1639 (2011). [3] N. D. Birrel and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge 1982). [4] I. I. Cotăescu, J. Phys. A: Math. Gen. 33, 9177 (2000). [5] B. Carter and R. G. McLenaghan, Phys. Rev. D 19, 1093 (1979). [6] N. A. Chernikov and E. A. Tagirov, Ann. Inst H. Poincaré IX 1147

Open access

Nikolay K. Vitanov and Zlatinka I. Dimitrova

itanov , N. K., Z. I. D imitrova , H. K antz . Modified Method of Simplest Equation and its Application to Nonlinear PDEs. Applied Mathematics and Computation, 216 (2010), 2587-2595. [7] V itanov , N. K. Modified Method of Simplest Equation: Powerful Tool for Obtaining Exact and Approximate Traveling-Wave Solutions of Nonlinear PDEs. Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 1176-1185. [8] V itanov , N. K., Z. I. D imitrova , K. N. V itanov . Modified Method of Simplest Equation for Obtaining Exact Analytical Solutions

Open access

Zlatinka I. Dimitrova

Human Arterial Network: Comparison of Theoretical and Experimental Results. Journal of Biomechanical Engineering , 133 (2011), Article No. 121005. [22] I l ’I chev , A. T., Y.-B. F u . Stability of Aneurism in a Fluid-filled Ellastic Membrane Tube. Acta Mechanica Sinica , 28 (2012), 1209–1218. [23] V an D er V osse , F. N., N. S tergiopoulos . Pulse Wave Propagation in the Arterial Tree. Annual Review of Fluid Mechanics , 43 (2011), 467–499. [24] G opalakrishnan , S. S., B. P ier , A. B iesheuvel . Dynamics of Pulsatile Flow through Model

Open access

M. Bunoiu, I. Jugunaru, I. Bica and M. Balasoiu

-Applications of Low-Temperature Gas Plasmas in Medicine and Biology” University Press, Cambridge (2012) [15] S.K. Pankaj, C. Bueno-Ferrer, N.N. Misra, V. Milosavljević, C.P. O'Donnell, P. Bourke, K.M. Keener, P.J. Cullen, Trends in Food Science & Technology, 35(1) (2014) 5-17 [16] N. Gherbanovschi, Gh. Petrescu, "Inductive Plasma" (in Romanian), RSR Academy Press, Bucharest (1983) [17] S. Pekárek, Acta Polytechnica, 43 (2003) 47-51 [18] P. L. F. Giangrande, Brit. J. Haematology 121, (2003) 703

Open access

Dimitar Dichev, Hristofor Koev and Petr Louda

References [1] Pronkin, N. S. Basics of Metrology for Dynamic Measurements,Moskow, Logos, 2003. [2] Stepetov, A. G. Theory, Calculation and Design of Measuring Instruments, Moscow, Standartinform, 2006. [3] Nazarov, N. G. Metrology. Basic Concepts and Mathematical Models, Moscow, Vishshaya Shkola, 2002. [4] Granovskij, V. A. Dynamic Measurements, St. Petersburg, Energoatomizdat, 1984. [5] Rivkin, S. S. Definition of Dynamic Errors of Gyro-Instruments on a Moving Base, Moscow

Open access

Nikolay K. Vitanov and Roumen Borisov

References [1] W eisbuch , G. Complex Systems Dynamics. Addison-Wesley, Boston, 1991. [2] M arsan , G. A., N. B ellomo , A. T osin . Complex Systems and Society: Modeling and Simulation. Springer, New York, 2013. [3] A maral , L. A. N., J. M. O ttino . Complex Networks. Augmenting and Framework for the Study of Complex Systems. Eur. Phys. J. B , 38 (2004), 147-162. [4] V itanov , N. K. Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models, Springer, Cham, 2016. [5] V itanov , N. K

Open access

Zlatinka Dimitrova

Method for Solving Nonlinear Differential-Difference Equations. Chaos Solitons & Fractals , 27 (2006), 1067-1071. Aslan, I. Analytic Solutions to Nonliner Differential-Difference Equations by Means of the Extended (G'/G)-Expansion Method. J. Phys. A: Math. Theor. , 43 (2010), 395207. Aslan, I. A Discrete Generalization of the Extended Simplest Equation Method. Commun. Nonlinear Sci. Numer. Simulat. , 15 (2010), 1967-1973. Kudryashov, N. A. A Note on the G'/G -Expansion Method

Open access

Bahattin İşcan

References [1] Temiz, ¸S. J. Application of Bi-adhesive in Double-strap Joints subjected to Bending Moment. Adhesion Sci. Technol., 20 (2006), 1547-1560. [2] Da Silva, L. F. M., A. Pirondi, A. ¨O. Chsner. Hybrid Adhesive Joints, Heidelberg, Springer, 2011. [3] Sayman, O. Elasto-plastic Stress Analysis in an Adhesively bonded Single-lap Joint. Compos. Part B-Eng., 43 (2012), 204-209. [4] Tang, J. H., I. Sridhar, N. Srikanth. Static and Fatigue Failure Analysis of Adhesively bonded Thick Composite

Open access

Gbadebo I. Olatona

References [1] FAO Corporate Document Respository: “Crop evapotranspiration for computing crop requirement”. [2] Angstom A.S. (1924) “Solar and Terrestrial Radiation” Meteorol. Soc. Vol. 50 pp 121-126 [3] Okundamiya S. and A. N. Nzeako (2010) “Empirical model for estimating global solar radiation on horizontal surfaces for selected cities in the six geopolitical zones in Nigeria,” Research Journal of Applied Science, Engineering and Technology, vol. 2, no. 8, pp. 805–812. [4] Fagbenle RO (1990): Estimation of total solar radiation in