Search Results

You are looking at 1 - 10 of 343 items for :

  • Chemical Engineering x
Clear All
Open access

Sylwia Jankowska, Tomasz Czakiert, Grzegorz Krawczyk, Paweł Borecki, Łukasz Jesionowski and Wojciech Nowak

. Fuel nitrogen conversion in solid fuel fired systems. Prog. Energy Combust. Sci., 29, 89-113. DOI: 10.1016/S0360-1285(02)00031-X. Hirma T., Hosoda A., Azuma N., 1998. Drastic reduction of NOX and N2O emission from BFBC of coal by means of CO2/O2 combustion: Effects of fuel gas recycle and coal type (C). Int. Symp. of Engineering Foundation Fluidization IX, USA. Lasek J.A., Janusz M., Zuwała J., Głód K., Iluk A., 2013. Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures. Energy, 62, 105-12. DOI: 10

Open access

Ewa Sztuk, Rafał Przekop and Leon Gradoń

References Chandrasekhar S., 1943. Stochastic problems in physics and astronomy. Rev. Mod. Phys. , 15, 1-89. DOI: 10.1103/RevModPhys.15.1 Davies C.N., 1973. Air Filtration. Academic Press, London. Gradoń L., Podgórski A., 1996. Deposition of inhaled particles. Discussion of present modeling techniques. J. Aerosol Med. , 9, 343-355. DOI: 10.1089/jam.1996.9.343. Hinds W.C., 1999. Aerosol Technology. John Wiley & Sons, New York

Open access

Robert Hubacz, Hayato Masuda, Takafumi Horie and Naoto Ohmura

REFERENCES Baks T., Ngene I.S., Van Soest J.J.G., Janssen A.E.M., Boom R.M., 2007. Comparison of methods to determine the degree of gelatinisation for both high and low starch concentrations. Carbohydr. Polym ., 67, 481–490. DOI: 10.1016/j.carbpol.2006.06.016. Brandam C., Meyer X. M., Proth J., Strehaiano P., Pinguad H., 2003. A original kinetic model for the enzymatic hydrolysis of starch during mashing. Biochem. Eng. J. , 13, 43-52. DOI: 10.1016/S1369-703X(02)00100-6. Dłuska E., Markowska-Radomska A., 2010. Regimes of multiple mmulsions of W

Open access

Pavlína Pustějovská and Simona Jursová

References Brož L., 1975. Theoretical basics of ironmaking . 1st edition, SNTL/ALFA, Praha, 162 - 175. Corre C.L., 1977. Modele mathematique de la reduction a contre / courant des oxydes de fer contenus dans les agglomeres. C.I.T ., 34, 3-22. Tůma J., Drabina J., Honza O., Staněk V., Moravec P., 1988. Using a mathematical model for evaluating the reductibility of iron bearing raw materials. Hutnické listy , 43, 228-233. Rist A., Meysson N., 1964. Recherche graphique de la mise on mille

Open access

Bronislaw Buczek

adsorpcyjnego oczyszczania spalin i przemysłowych gazów odlotowych metoda WKV z wykorzystaniem reaktorów ze złożem koksu/węgla aktywnego. Przegląd Komunalny , 3, 41-43. Zhu Q.Y., Lim C. J., Epstein N., Bi H.T., 2005. Hydrodynamic characteristics of a powder particle spouted bed with powder entrained in spouting gas. Can. J. Chem. Eng. , 83, 644-651. DOI: 10.1002/cjce.5450830404.

Open access

Robert Hubacz and Monika Buczyńska

Sci. , 31, 287-294. DOI:10.1006/jcrs.2000.0311 Saomoto K., Horie T., Kumagai N., Takigawa T., Noui-Mehidi M.N., Ohmura N., 2010. Dispersion of floating particles in a Taylor vortex flow reactor. J. Chem. Eng. Jpn. , 43, 319-325. DOI:10.1252/jcej.09We07. Sakonidou E.P., Karapantsios T.D., Raphaelides S.N., 2003. Mass transfer limitations during starch gelatinization. Carbohydr. Polym. , 53, 53-61. DOI:10.1016/S0144-8617(03)00010-9. Wereley S.T., Lueptow R.M., 1999. Velocity field for

Open access

Bohuš Kysela, Jiří Konfršt, Ivan Fořt, Michal Kotek and Zdeněk Chára

vessels. AICHE J., 12, 35-44. Derksen J.J., Doelman M.S., Van den Akker H.E.A., 1999. Three-dimensional LDA measurement in the impeller region of a turbulently stirred tank. Exp. Fluids, 27, 522 -532. DOI: 10.1007/S003480050376. Devi T.T., Kumar B., 2013. Comparison of flow patterns of dual Rushton and CD-6 impellers. Theor. Fund. Chem. Eng., 47, 344-355. DOI: 10.1134/S0040579513040210. Drbohlav J., Fořt I., Krátký J., 1978. Turbine impeller as a tangential cylindrical jet. Coll. Czech. Chem. Commun., 43, 696

Open access

Władysław Moniuk, Ryszard Pohorecki and Piotr Machniewski

References Benitez-Garcia J., Ruiz-Ibanez G., Al.-Ghawas H., Sandall O.C., 1991. On the effect of basicity on the kinetics of CO2 absorption in tertiary amines. Chem. Eng. Sci. , 46, 2927-2931. DOI: 10.1016/0009-2509(91)85161-P. Critchfield J., Rochelle G.F., 1987. CO2 absorption into aqueous MDEA and MDEA/MEA solutions. AJCHE National Meeting , Houston, TX, 30.03.1987. Proceedings, Paper No 43e, 33. Danckwerts P.V., 1979. The reaction of CO2 with ethanolamines. Chem. Eng. Sci. , 34, 443-446. DOI: 10

Open access

Jolanta Jaschik, Manfred Jaschik and Krzysztof Warmuziński

References Back M., Kuehn M., Stanjek H., Peiffer S., 2008. Reactivity of alkaline lignite fly ashes towards CO2 in water. Environ. Sci. Technol., 42, 4520-4526. DOI: 10.1021/es702760v. Bauer M., Gassen M., Stanjek H., Peiffer S., 2011. Carbonation of lignite fly ash at ambient T and P in a semi-dry reaction system for CO2 sequestration. Appl. Geochem., 26, 1502-1512. DOI:10.1016/j.apgeochem.2011.05.024. Huijgen W.J.J., Comans R.N.J., 2003. Carbon dioxide sequestration by mineral carbonation. Literature Review

Open access

Hamresin Archary, Walter Schmitz and Louis Jestin

REFERENCES Aizu Y., Asakura T., 1987. Principles and development of spatial filtering velocimetry. Appl. Phys. B: Photophysics Laser Chem., B43, 4, 209-224. Dodds J., Rasteiro G., Scarlett B., Weichert R., Williams R., 2004. From particle size analysis (PSA 1970) to particulate systems analysis (PSA 2003). Chem. Eng. Res. Des., 82, 1533-1540. DOI: 10.1205/cerd.82.12.1533.58040. Eskom n.d., Company information overview. Available at: FPM S.A. n.d., Ball