Search Results

You are looking at 1 - 10 of 23 items for :

  • Thermodynamics x
Clear All
Open access

Elena Valentina Stoian, Vasile Bratu, Cristiana Maria Enescu and Carmen Otilia Rusanescu

journal of systems applications, engineering & development Issue 1, Volume 6, 2012. [7] N. Oargă, T. Heput, E. Ardelean, E. Popa, Study on internal defects continuously cast blanks, Annals of Faculty of Engineering from Hunedoara, tom III, fasc.1, 2001. [8] E. Ardelean, M. Ardelean, A. Socalici, T. Heput, Simulation of continuous cast steel product solidification,Rev. Metal.Madrid 43, 181- 187, 2007. [9] V. Bratu, I.N. Popescu, The Mathematical Model Applied to Solidify and Segregation of Ledeburite Tool Steel Ingots

Open access

Ivona Camelia Petre, Adrian Catangiu, Ileana Nicoleta Popescu, Dan Nicolae Ungureanu, Alexis Daniel Negrea, Aurora Anca Poinescu, Maria Cristiana Enescu, Elena Valentin Stoian and Veronica Despa

Matrix Composites Reinforced with Ceramic Particles, Under Sliding Conditions. Proceedings of the International Conference of Mechatronics and Cyber-MixMechatronics, Springer International Publishing, 2018, pp. 71-82. [4] Popescu, I. N., Zamfir, S., Anghelina, V. F., & Rusanescu, C. O. (2010). Processing by P/M route and characterization of new ecological Aluminum Matrix Composites (AMC). International Journal of Mechanics , 4 (3), pp. 43-52. [5] Rusanescu, C.O., Rusanescu, M., Jinescu, C., & Biris, S.S. (2018). Laser Hardening Influence of Metal Surfaces

Open access

Praveen Ailawalia and Amit Singla

}x}]\\\displaystyle +\sum_{n=1}^{4}[R_{6(n+4)}L_{(n+4)}(b,\,\omega)e^{k_{{n}}x}]+\xi_{6}\exp(-\gamma x) \end{array}$$ (43) where R 1 n = i b [ B 1 − ( l 2 − 1 ) k n 2 ] [ ( B 3 − b 2 l 2 ) k n − l 3 k n 3 ] , R 1 ( n + 4 ) = i b [ B 1 − ( l 2 − 1 ) k n 2 ] [ ( b 2 l 2 − B 3 ) k n + l 3 k n 3 ] , $$\begin{array}{} \displaystyle R_{1n}=\frac{ib[B_{1}-(l_{2}-1)k_{n}^{2}]}{[(B_{3}-b^{2}l_{2})k_{n}-l_{3}k_{n}^{3}]},\\\displaystyle R_{1(n+4)}=\frac{ib[B_{1}-(l_{2}-1)k_{n}^{2}]}{[(b^{2}l_{2}-B_{3})k_{n}+l_{3}k_{n}^{3}]}, \end{array}$$ R 2 n = [ l 3 k n 4 − ( B 4 l 3 + B 3 ) k n 2

Open access

S. Sakthivelu, M. Meignanamoorthy, M. Ravichandran and P. P. Sethusundaram

effects of different ceramics size and volume fraction on wear behavior of Al matrix composites (for automobile cam material), Wear, 289, 73–81, 2012. Karamis M. B. Alper Cerit A. Selcuk Burhan Nair Fehmi The effects of different ceramics size and volume fraction on wear behavior of Al matrix composites (for automobile cam material) Wear 289 73 81 2012 [4] Veeresh Kumar, G. B., Rao, C. S. P., Selvaraj, N., Bhagyashekar, M. S.: Studies on Al6061-SiC and Al7075-Al 2 O 3 Metal Matrix Composites, Journal of Minerals & Materials Characterization & Engineering, 9, 43

Open access

Ileana Nicoleta Popescu and Ruxandra Vidu

.A. Aguilar-Reyes, Cold compaction of metal-ceramic powders in the preparation of copper base hybrid materials, Materials Science and Engineering A 526 (2009).106.- [19] C. Ghiţă, I.N. Popescu, Experimental research and modelling of compaction behaviour of Al based composite with SiC particles, Comp Mater Sci, 64 (2012) 136-140. [20] S.Sivasankaran, PhD Thesis, Coordinator Prof. Dr. R.Narayanasamy Study on Synthesis, Characterization and Workability behavior of nanocrystalline AA6061 alloy reinforced with TiO2 Composite prepared by Mechanical alloying, NIT

Open access

Puja Basu Chaudhuri, Anirban Mitra and Sarmila Sahoo

] { δ s x i } ; Y −  stiffener : { F s y } = [ D s y ] { ε s y } = [ D s y ] [ B s y ] { δ s y i } $$\begin{array}{} \displaystyle X-\text{ stiffener}: \{F_{sx}\}=[D_{sx}]\{\varepsilon_{sx}\}\\\displaystyle\,\, =[D_{sx}][B_{sx}]\{\delta_{sxi}\};\\\displaystyle Y-\text{ stiffener}\!\!: \{F_{sy}\}=[D_{sy}]\{\varepsilon_{sy}\}=[D_{sy}][B_{sy}]\{\delta_{syi}\} \end{array} $$ (1) where { F s x } = [ N s x x M s x x T s x x Q s x x z ] T ; { ε s x } = [ u s x . x α s x . x β s x . x ( α s x + w s x . x ) ] T $$\begin{array}{} \displaystyle \{F_{sx}\}=\, \Big[N

Open access

Ileana Nicoleta Popescu, Ruxandra Vidu and Vasile Bratu

REFERENCES Journals: [1] M. Moravej, D. Mantovani, Review. Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities, Int. J. Mol. Sci. 12 (2011) 4250-4270. [2] F.V. Anghelina, D. Ungureanu, V. Bratu, I.N. Popescu*, C.O. Rusanescu, Fine Structure Analysis of Biocompatible Ceramic Materials Based Hydroxyapatite and Metallic Biomaterials 316L, APPL SURF SCI, 285 A, (2013) 65-71. [3] J. Čapek, D. Vojtěch, Powder metallurgical techniques for preparation of biomaterials, Manuf.Technol., 15(6)(2015), 964

Open access

Rajneesh Kumar, Shaloo Devi and Veena Sharma

}e^{-s{f}}f(t)dt=\overline{f}({s}) . \end{array} $$ (22) where s is the Laplace transform parameter. The system of equations (19) to (21) , after applying the Laplace transform can be written in a matrix form as: D V ( x , s ) = A V ( x , s ) , $$\begin{array}{} DV(x,{s})=AV(x,{s}), \end{array} $$ (23) where, V = U D U , U = [ w ¯ v ¯ T ¯ 1 C ¯ 1 ] T , A = O I A 1 O , A 1 = 0 1 0 0 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 . $$\begin{array}{} V=\left[\begin{array}{c} U\\ DU \end{array}\right],\quad U=[\overline{w}\quad \overline{v} \quad\overline{T}_{1}\quad

Open access

Azzeddine Belaziz and Mohamed Mazari

welded specimens at all stretch speeds. References [1] Costa, A. P. D., Botelho, E. C., Costa, M. L., Narita, N. E. and Tarpani, J. R.: A Review of Welding Technologies for Thermoplastic Composites in Aerospace Applications. Aerosp. Technol. Manag. São José dos Campos, 4(3), 255-265, 2012. Costa A. P. D. Botelho E. C. Costa M. L. Narita N. E. Tarpani J. R. A Review of Welding Technologies for Thermoplastic Composites in Aerospace Applications Aerosp. Technol. Manag. São José dos Campos 4 3 255 265 2012 [2] Neale, K. W. and Tugcu, P.: Analysis of necking and

Open access

R. Bouchenafa, Hussein A. Mohammed and R. Saim

were considered to be converged when the convergence criterion values hit 10 −6 for all variables. 2.6.1 Grid sensitivity A serial of test simulations (Nx-Ny-Nz) were performed to ensure the grid independence for an inlet velocity equal to 10m/s (Re = 5300). Plate fin heat sink (PFHS): The mesh densities of (280 × 62 × 59), (240 × 55 × 50), (200 × 43 × 41), (160 ×x31 ×27), and (120 × 19 × 18) were used. Wavy fin heat sink (WFHS) having (n = 3 and h = 3 mm): The mesh densities of (320 × 74 × 68), (280 × 62 × 59), (240 × 55 × 50), and (200 × 43 × 41