Search Results

You are looking at 1 - 10 of 25 items for :

  • Physical Chemistry x
Clear All
Open access

Józef Rak

References [1] Gnutek Z.: Rotating Blade Machinery . Wrocław 1997 (in Polish). [2] Gravesen J., Henriksen C.: The geometry of the scroll compressor . SIAMRev. 43(2001), 1, 113-126. [3] Chen Y., Halm N.P., Groll E.A., Braun J.E.: A comprehensive model of scroll compressors. Part I:: Compression process modeling . Int. Compressor Engineering Conf. (2000). Paper 1455. [4] Morishita E., Sugihara M., Inaba T., Nakamura T.: Scroll compressor analytical model . Int. Compressor Engineering

Open access

Marian Trela, Roman Kwidziński and Dariusz Butrymowicz

of using a supercritical regenerative heat exchanger in a steam supercritical thermodynamic cycle . Trans. IFFM, 66(1975), 29-43 (in Polish). [5] Angelino G.: Real gas effects in carbon dioxide cycles . Atomkernenergie 17(1971), 27-33. [6] Dostal V.: A supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors . DSc thesis, Massachusetts Institute of Technology, 2004. [7] Liu B.T., Chien K.H., Wang C.C.: Effect of working fluid on organic Rankine cycle for waste recovery . Energ. 29(2004) 1207

Open access

Artur Błaszczuk

Mass Tran. 43 (2000), 1173–1185. [17] L ockhart C., Z hu J., B rereton C.M.H., L im C.J., G race J.R.: Local heat transfer, solids concentration and erosion around membrane tubes in a cold model circulating fluidized bed . Int. J. Heat Mass Tran. 38 (1995), 2403–2410. [18] N ag P.K., N awsher M., B asu P.: A mathematical model for the predicted of heat transfer from finned surfaces in a circulating fluidized bed . Int. J. Heat Mass Tran. 38 (1995), 1675–1681. [19] W u R.L., G race J.R., L im C.J.: A model for heat transfer in

Open access

Konrad Motyliński and Jakub Kupecki

References [1] K aundinya D.P., B alachandra P., R avindranah N.H.: Grid-connected versus stand-alone energy systems for decentralized power – A review of literature . Renew. Sust. Energ. Rev. 13 (2009), 2041–2050. [2] F renzel I., L oukou A., T rimis D., S chroeter F., M ir L. et al. : Development of an SOFC based micro-CHP system in the framework of the European project FC-DISTRICT . Energy Procedia 28 (2012), 170–181. [3] S taniforth J., O rmerod R.M.: Running solid oxide fuel cells on biogas . Ionics 9 (2003), 5-6, 336

Open access

Monika Kosowska-Golachowska, Władysław Gajewski and Tomasz Musiał

- ation of the thermal conductivity and thermal diffusivity of coal. Fuel 43(1964), 267-280. [8] Dindi H., Bai X., Krantz W.B.: Thermal and electrical property measurements for coal. Fuel 68(1989), 185-192. [9] Singer J.M., Tye, R.P.: Thermal, mechanical and physical properties of selected bituminous coal and cokes. Bureau of Mines Report of Investigations 8364 (1979). [10] Herrin J.M., Deming D.: Thermal conductivity of U.S. coals. J. Geophys. Res. 101(1996), 25, 381-386. [11] Suleiman B.M., Larfeldt J

Open access

Jakub Kupecki and Krzysztof Badyda

References [1] Kirubakaran A., Jain S., and Nema R.K.: A review of fuel cell technologies and power electronic interface. Renew. Sust. Energ. Rev. 13(2009), 2430-2440. [2] Blum L., Deja R., Peters R., and Stolten D.: Comparison of efficiencies of low, mean and high temperature fuel cell systems. Int. J. Hydrogen Energ. 36(2011), 11056-11067. [3] Kendall K., Finnerty C.M., Tompsett G.A., Windibank P., and Coe N.: Rapid heating SOFC system for hybrid applications. Electrochemistry 68(2000), 6, 403

Open access

Jan Taler, Dawid Taler, Tomasz Sobota and Piotr Dzierwa

heat flux in boiler furnaces. Int. J Heat Mass Transfer 35 (1992), 1625-1634. Fang Z., Xie D., Diao N., Grace J. R., Jim Lim C.: A new method for solving the inverse conduction problem in steady heat flux measurement. Int J Heat Mass Transfer 40 (1997), 3947-3953. Luan W., Bowen B. D., Lim C. J., Brereton C. M. H., Grace J. R.: Suspension-to membranewall heat transfer in a circulating fluidized bed combustor. Int J. Heat Mass Transfer 43 (2000), 1173-1185. Sobota T., Taler D.: The

Open access

Shubham Mishra and Jahar Sarkar

-318. [20] Klein S.A.: Engineering Equation Solver Professional. Version V10.042-3D, 2016. [21] Ersoy H.K., Sag N.B.: Preliminary experimental results on the R134a refrigeration system using a two-phase ejector as an expander. Int. J. Refrig. 43(2014), 97-110.

Open access

Rafał Laskowski, Artur Rusowicz and Andrzej Grzebielec

. Phys. 79 (1996), 1191–1218. [5] B ejan A.: Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes . CRC Press LLC, 1996. [6] O rdonez J., B ejan A.: Entropy generation minimization in parallel-plates counterfow heat exchangers . Int. J. Energ. Res. 24 (2000), 843–864. [7] O gulata R.T., D oba F., Y ilmaz T.: Irreversibility analysis of cross flow heat exchangers . Energ. Convers. Manage. 41 (2000), 1585–1599. [8] S ahiti N., K rasniqi F., F ejzullahu X h ., B

Open access

Szymon Mocarsk and Aleksandra Borsukiewicz-Gozdur

(2010), 2357-2362. [29] Cayer E., Galanis N., Nesreddine H.: Parametric study and optimization of a transcritical power cycle using a low temperature source. Appl. Energ. 87(2010), 1347-1357. [30] Karellas S., Schuster A., Leontaritis A.D.: Influence of supercritical ORC parameters on plate heat exchanger design. Appl. Thermal Eng. 33-34(2012), 70-76. [31] Kim Y.M., Kim C.G., Favrat D.: Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources. Energy 43(2012), 402-415. [32