Search Results

You are looking at 1 - 10 of 11 items for :

  • Nuclear Chemistry x
Clear All
Open access

Wioleta Olszewska, Agnieszka Miśkiewicz, Grażyna Zakrzewska-Kołtuniewicz, Leszek Lankof and Leszek Pająk

and Agro-chemistry. 13. Bondietti, E. A. (1982). Mobile species of Pu, Am, Cm, Np and Tc in the environment. Environmental Migration of Long-Lived Radionuclides. Vienna: International Atomic Energy Agency. (SM257/42). 14. Pruess, K., Oldenburg, C., & Moridis, G. (1999). TOUGH2 User’s Guide, Version 2.0. Lawrence Berkeley National Laboratory. 15. Curtis, M., Oldenburg, C., & Pruess, K. (1995). EOS7R: Radionuclide Transport for TOUGH2, Berkeley: Lawrence Berkeley National Laboratory. (Report LBL-34868

Open access

Beata Kozłowska, Jadwiga Mazur, Krzysztof Kozak, Agata Walencik-Łata and Błażej Baic

Poland 2011. (Biblioteka Monitoringu Środowiska) Warszawa Centralne Laboratorium Ochrony Środowiska (in Polish) 3. Hassan, M., Hosoda, M., Ishikawa, T., Sorimachi, A., Sahoo, S. K., Tokonami, S., & Fukushi, M. (2009). Radon migration process and its influence factors; Review. Jpn. J. Health Phys. , 44 , 218–231. Hassan M. Hosoda M. Ishikawa T. Sorimachi A. Sahoo S. K. Tokonami S. Fukushi M. 2009 Radon migration process and its influence factors; Review Jpn. J. Health Phys. 44 218 231 4. Kojima, H., & Nagano, K

Open access

Małgorzata Wysocka

1062739149050067 16. Wysocka, M. (2011). Influence of mining on radon migration in the geological environment (Wpływ górnictwa na migrację radonu w środowisku geologicznym). (Prace Naukowe GIG, vol. 885). Katowice: Główny Instytut Górnictwa (in Polish). Wysocka M. 2011 Influence of mining on radon migration in the geological environment (Wpływ górnictwa na migrację radonu w środowisku geologicznym) (Prace Naukowe GIG, vol. 885). Katowice Główny Instytut Górnictwa (in Polish) 17. Ball, T. K., & Miles, J. C. H. (1993). Geological and

Open access

Mirosław Janik and Peter Bossew

Abstract

It is well known that the temporal dynamic of indoor and outdoor radon concentrations show complex patterns, which are partly not easy to interpret. Clearly, for physical reasons, they must be related to possibly variable conditions of radon generation, migration and atmospheric dispersion and accumulation. The aim of this study was to analyse long-time series of simultaneously measured indoor and outdoor radon concentrations, together with environmental quantities, which may act as control variables of Rn. The study was performed in Chiba, Japan, using two ionization chambers for parallel indoor and outdoor radon concentrations measurements over 4 years. Meteorological and seismic data were obtained from the Japan Metrological Agency (JMA).

Open access

Volodymyr T. Maslyuk, Olesya I. Symkanich, Natalya I. Svatyuk, Oleg O. Parlag and Sergij M. Sukharev

Abstract

The results of the low-background gamma spectrometric measurements of protected mountain areas (Zacharovanyy Kray, Chorne Bahno, Ihthyological Preserve Rika and Uzhanskij National Natural Park) in the region of Primeval Beech Forests of the Transcarpathia, Ukraine, are presented. The distances between sampling points in a single protected area were in the range of 200–400 m in elevation of 300 m; probes were taken from the surface, from depth 20 cm and more than 50 cm. The proposed sampling scheme allows one to investigate the radionuclide concentration in protected area’s soils, their distribution on/near the mountain ridges and migration in depth (0–50 cm). We also investigate the influence the soils’ pH on the contents and the migration of nuclides. The obtained data allow us to study the statistical regularities between the sampling points along and down mountain ridges on the base of their radionuclide content. These results are important for evaluating the radon content/distribution and developing standards in the radionuclide content of the soil Carpathian region.

Open access

Arūnas Gudelis and Inga Gorina

References 1. Gudelis, A., Nedveckaitė, T., Prokopčiuk, N., Filistovič, V., Remeikis, V., & Motiejūnas, S. (2010). Assessment of radionuclide migration and radiological human exposure at the closed near-surface radioactive waste repository. Nukleonika, 55(2), 251-259. 2. Nedveckaitė, T., Gudelis, A., & Vives i Batlle, J. (2013). Impact assessment of ionizing radiation on human and non-human biota from the vicinity of a near-surface radioactive waste repository. Radiat. Environ. Biophys., 52(2), 221-234. 3

Open access

Piotr Decyk, Andrzej B. Więckowski, Lidia Najder-Kozdrowska and Iveta Bilkova

-state ion exchange in zeolites using pyridine as a probe. J. Chem. Soc. Faraday Trans ., 91 (12), 1845–1851. DOI: 10.1039/ft9959101845. 8. Karge, H. G., Hunger, M., & Beyer, H. K. (1999). Characterization of zeolites – infrared and nuclear magnetic resonance spectroscopy and X-ray diffraction. In J. Weitkamp & L. Puppe (Eds.), Catalysis and zeolites: Fundamentals and applications (pp. 198–326). Berlin: Springer-Verlag. 9. Goslar, J., & Więckowski, A. B. (1985). Migration and structure of aqueous Cu 2+ complexes in Faujasite. J. Solid State Chem ., 56 (1

Open access

Allan Felipe Nunes Perna, Sergei Anatolyevich Paschuk, Janine Nicolosi Corrêa, Danielle Cristine Narloch, Rafael Carvalho Barreto, Flávia Del Claro and Valeriy Denyak

. Bikit, I., Mrda, D., Grujic, S., & Kozmidis-luburic, U. (2011). Granulation effects on the radon emanation rate. Radiat. Prot. Dosim., 145 (2/3), 182–188. https://doi.org/10.1093/rpd/ncr055 . 18. Hassan, N. M., Hosoda, M., Ishikawa, T., Sorimachi, A., Sahoo, S. K., Tokonami, S., & Fukushi, M. (2009). Radon migration process and its influence factors: review. Jpn. J. Health Phys. , 44 (2), 218–231. 19. Petropoulos, N. P., Anagnostakis, M. J., & Simopoulos, S. E. (2001). Building materials radon exhalation rate: ERRICCA intercomparison exercise results

Open access

Manuel Barrera, Melquiades Casas-Ruiz, José J. Alonso and Juan Vidal

: Model of vertical migration of 137 Cs. J. Environ. Radioact ., 80 , 87–103. 7. International Organization for Standardization. (1995). Guide to the expression of uncertainty in measurement . Geneva, Switzerland: ISO. 8. Bolívar, J. P., García-Tenorio, R., & García-León, M. (1994). A generalized transmission method for gamma-efficiency determination in soil samples. Nucl. Geophys ., 8 (5), 485–492. 9. Zikovsky, L. (1997). Variation of the detection efficiency of a Ge detector with the height of the sample in Marinelli beaker. J. Radioanal. Nucl

Open access

Krzysztof Kilian, Zbigniew Rogulski, Łukasz Cheda, Agnieszka Drzał, Marina Gerszewska, Michał Cudny and Martyna Elas

, and cancer: surviving the harsh tumor microenvironment. Trends Cell. Biol., 24(8), 472-477. 4. Brown, J. M. (2007). Tumor hypoxia in cancer therapy. H. Sies, & B. Brune (Eds.) Methods in enzymolology. Vol. 435 (pp. 297-321). Academic Press. 5. Nagelkerke, A., Bussink, J., Mujcic, H., Wouters, B. G., Lehmann, S., Sweep, F. C. G. J., & Span, P. N. (2013). Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res., 15, R2(13pp). 6. Weeks, A. J