Search Results

You are looking at 1 - 10 of 35 items for :

Clear All
Open access

Timár Pavel, Stopka Ján and Báleš Vladimír

References Frank P Incropera, David P DeWitt (1996) Fundamentals of Heat and Mass Transfer. Nusselt W (1916) Die Oberflachenkondensation des Wasserdampfes, VDI-Zeitschrift 60: 542-575. Kapitza PL (1948) J. Experimental Theoret. Phys. 18(1): 3-18. Brauer H (1956) Stromung und Warmeubergang bei Rieselfilmen, VDI Forsch., Heft 457. Kosky P (1971) Int. J Heat Mass Transfer 14: 1220-1224. Kutadeladze S (1963) Fundamentals of heat transfer. Edward Arnold, London

Open access

Bartosz Piechowicz, Kinga Stawarczyk and Michał Stawarczyk

References [1] Kozłowski J. Ochr Roślin. 1995;9:33-5. [2] Schmid G. Archiv Molluskenkd. 1970;100:95-102. [3] Briner T, Frank T. J Conchol. 1998;36(3):9-15. [4] Reischütz P. Heldia. 1984;1:39. [5] Wiktor A. Ann Zool. 1996;46:1-110. [6] Cesari P. Lavori della Societa Veneta di Scienze Naturali. 1978;3:3 - 7. [7] Winter AJ. Basteria. 1989;53(1):49-51. [8] Davies MJ. J Conchol. 1987;32:339-354. [9] Sionek R. Progr

Open access

Bartosz Piechowicz, Przemysław Grodzicki, Iwona Piechowicz and Kinga Stawarczyk

References [1] Frank T. Slug damage and numbers of the slug pests, Arion lusitanicus and Deroceras reticulatum, in oilseed rape grown beside sown wildflower strips. Agric Ecosyst Environ. 1998;67:67-78. DOI: 10.1016/S0167-8809(97)00108-4. [2] Kozłowski J. Density of the slug Arion lusitanicus Mabille (Gastropoda: Pulmonata) in different microhabitats. J Plant Prot Res. 2000;40:158-161. [3] Grimm B, Paill W. Spatial distribution and home-range of the pest slug Arion lusitanicus (Mollusca: Pulmonata). Acta Oecol

Open access

Barbora Kaliňáková, Daniela Hudecová, Peter Segľa, Martina Palicová and Jozef Švorec

References Abou-Seif MAM, El-Naggar MM, El-Far M, Ramadan M, Salah N (2003) Clinica Chimica Acta 337: 23–33. Betina V (1981) Chémia a biológia antibiotík. VEDA, Bratislava. Betina V, Baráthová H, Fargašová A, Frank V, Horáková K, Šturdík E (1987) Mikrobiologické laboratórne metódy. Alfa, Bratislava. Dillon CT, Hamblex TW, Kennedy BJ, Lay PA, Zhore Q, Davies NM, Biffin JR, Reqtop HL (2003) Chemical Research in Toxicology 16: 28–37. Dudová B, Hudecová D, Pokorný R, Mičková M, Palicová M, Segľa P, Melník M (2002) Folia Microbiologica 47

Open access

L. Hołysz, M. Mirosław, K. Terpiłowski and A. Szcześ

). L. M. Lander, L. M. Siewierski, W. J. Brittain, E. A. Vogler, Langmuir , 9, 2237 (1993). E. L. Decker, B. Frank, Y. Suo, S. Garoff, Colloids Surf. A , 156, 177 (1999). J. Höpken, M. Möller, Macromolecules , 25 91992) 1461. R. S. Faibish, W. Yoshida, Y. Cohen, Jv. Colloid Interface Sci. , 256, 341 (2002). E. Chibowski, L. Hołysz, A. Zdziennicka and F. González-Caballero, in: Surfactants and Solution , A. K. Chattopadhyay and A. K. Mittal (eds), Vol. 64

Open access

Konrad Terpiłowski

References [1] E.L. Decker, B. Frank, Y. Suo, S. Garoff, Colloids Surf. A, 156, 177, (1999). [2] T. S. Merion, A. Marmur, I. Sam Saguy, J. Colloid Interface Sci. 274, 637, (2004). [3] R.N. Wenzel., Ind Eng Chem., 28, 98, (1936),. [4] W. Barthlott, C. Neinhuis, Planta 202, 1, (1997). [5] E. Chibowski, L. Holysz, K. Terpilowski, Colloid Surfaces A, 291, 181, (2006). [6] J. Drelich, E. Chibowski, D. D. Meng, K. Terpilowski, Soft Matter, 7, 9804, (2011

Open access

Hussein Kadhem Al-Hakeim, Muneer Kadhem Khudhair and Eric Anderson Grulke

, Ciurli S (1998) Soil Biol. Biochem. 30: 1485—1490. Meyers RA (2000) In Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, Chichester, 10815—10837. Mobley HL, Hausinger RP (1989) Microbiol. Rev. 53: 85—103. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli F et al. (2011) J. Am. Chem. Soc. 133: 2525—2534. Myers C (1988) In Characterization of proteins, ed F. Franks. Humana Press, Clifton, NJ, 491—451. Norde W, MacRitchie F, Nowicka G (1986) J. Colloid Interface Sci. 112: 447—456. Perez-Iratxeta C, Andrade

Open access

Semaghiul Birghila, Georgiana Baronescu and Anca Dumbrava

-146. [13]. D. E. Archer, A model of the iron cycle in the ocean, Global Biogeochemical Cycles 14 (2000) 269-279. [14]. U. Schmedtje (overall coordinator and editor), The Danube river basin district, prepared by International Commission for the Protection of the Danube River (ICPDR) in cooperation with the countries of the Danube River Basin District, International Commission for the Protection of the Danube River Vienna International Centre, Vienna 2005. [15]. D.J. Pietrzyh, C.W. Frank, Analytical Chemistry, Academic Press, New York

Open access

Alexandra Pažitná, Nikoleta Jánošková and Ivan Špánik

-342. Guthery B, Bassindale Al, Pillinger CT, Morgan GH (2009) Rapid communnications in mass spectrometry 23: 340-348. Hao Ch, Headley JV, Peru KM, Frank R, Yang P, Solomon KR (2005) Journal of Chromatography A 1067: 277-284. Harynuk J, Gorecki T, de Zeeuw J (2005) Journal of Chromatography A 1071: 21-27. Khummueng W, Morrison P, Marriott PJ (2008) Journal of Separation Science 31: 3404-3415. Kocak D, Oze MZ, Gogus F, Hamilton JF, Lewis AC (2012) Food Chemistry 135: 2215-2220. Kueh AJ, Marriott PJ

Open access

Catharinus F. Jaarsma, Frank van Langevelde and Raoul Beunen


Jaarsma C.F., van Langevelde F., Beunen R.: Landscape ecology and rural roads: Traffic calming for improving both landscape and wildlife? Ekologia (Bratislava), Vol. 32, No. 4, p. 352-360, 2013.

The concept of traffic calming has successfully improved road safety. This concept applied in rural areas has provided new insights in the mitigation of negative effects of roads and traffic. Earlier studies have shown that the concept, distinguishing between local access roads and rural arterial highways, can also improve landscape connectivity for wildlife. Physical speed-reducing devices are frequently used in the context of traffic calming, but applying these devices may negatively impact the coherence and identity of the landscape. Therefore an alternative approach for speed reduction has been proposed, namely applying local landscape elements (such as hedgerows), plantings and objects of cultural heritage (such as railings of small bridges over local water courses) as speed-reducing devices. We explain this ‘green approach’ with examples from Dutch practice. We conclude that a combination of disciplines is needed to realize this new approach, which may be more cost-effective than the traditional approach and additionally improve the landscape quality. The new insights are at least equally effective from a landscape ecological viewpoint.