Search Results

You are looking at 1 - 10 of 128 items for :

  • Engineering x
  • Theoretical and Mathematical Physics x
Clear All
Open access

Murat Karakus, Aydin Cavus and Mehmet Colakoglu

Utilizing Eigen Values of the Axi-symmetric Non-contacting Tire. J. Sound Vib., 70 (1980), No. 4 , 573-584. [5] K ozhevnikov , I. F. The Vibrations of a Free and Loaded Tyre. J. Appl. Math. Mech., 70 (2006), 223–228. [6] H uang , S. C. The Vibration of Rolling Tyres in Ground Contact. Int. J. of Vehicle Des., 13 (1992), No. 1 , 78–95. [7] K im , B. S., C. H. C hi , T. K. L ee . A Study on Radial Directional Natural Frequency and Damping Ratio in a Vehicle Tire. Appl. Acoust., 68 (2007), 538-556. [8] G uan , Y., G. C heng , G. Z

Open access

Mohamed Abd El-Aziz and Aishah S. Yahya

, 6 (2010), No. 1, 39-57. [12] SATTAR, M. A. Free Convection and Mass Transfer Flow through a Porous Medium past an Infinite Vertical Porous Plate with Time Dependent Temperature and Concentration. Ind. J. Pure Appl. Math, 23 (1994), 759-766. [13] REES, D. A. S., I. POP. Free Convection induced by a Vertical Wavy Surface with Uniform Heat Flux in a Porous Medium. Journal of Heat Transfer, 117 (1995), No. 2, 547-550. [14] ACHARYA, M., G. C. DASH, L. P. SINGH. Magnetic Field Effects on the Free Convection and Mass

Open access

Svetla Lekova, Aleksander Aleksandrov, Milena Milenova and Tzolo Tzolov

References [1] Lekova, S., M. Milenova. Generalized Model of Viscoelastic Deformation. Int. J. of Pure and Applied Mathematics, 81 (2012), No. 4, 635-646. IX Scientific Poster Session, UCTM, 2012. [2] Alexandrov, A., Tz. Tzolov. Creep Strength Under Viscoelastic Conditions. International Journal of Differential Equations and Applications, 3 (2001), No. 4, 359-363. [3] Alexandrov, A. Research Mechanical Proporties of Structures, Journal of the University of Chemical Technology and Metallurgy, XXXVIII

Open access

Ibrahim A. Abbas

Heat Conduction Involving Two- temperatures. Zamp, 19 (1968), 614-627. [13] Chen, P. J., M. E. Gurtin, W. O. Williams. On the Thermodynamics of Non-Simple Elastic Material with Two-temperatures. Zamp, 20 (1969), 107-112. [14] Youssef, H. M. Theory of Two-Temperature Thermoelasticity without Energy Dissipation. J. Thermal Stresses, 34 (2011), No. 2, 138-146. [15] Banik, S., M. Kanoria. Two-temperature Generalized Thermoelastic Interactions in an Infinite Body with a Spherical Cavity. International Journal of

Open access

M. Muthtamilselvan and S. Sureshkumar

Buoyancy-Driven Convection of Water around 4°C in a Porous Cavity with Internal Heat Generation. Phys. Fluids , 20 (2008), 087104. [13] J eng , T. M., S. C. T zeng . Heat Transfer in a Lid-Driven Enclosure Filled with Water-Saturated Aluminum Foams. Numer. Heat Transfer A , 54 (2008), 178-196. [14] C hattopadhyay , A., S. K. P andit , S. S. S arma , I. P op . Mixed Convection in a Double Lid-Driven Sinusoidally Heated Porous Cavity. Int. J. Heat Mass Transfer , 93 (2016), 361-378. [15] G hazvini , M., H. S hokouhmand . Investigation of a

Open access

Sandhyarani Bandari, Anand Rao Jakkula and Malla Reddy Perati

R eferences [1] B iot M. A. The Theory of Propagation of Elastic Waves in Fluid-Saturated Porous Solid. Journal of Acoustical Society of America , 28 (1956), 168-178. [2] T ajuddin , M., S. A. S hah . Radial Vibrations of Thick-Walled Hollow Poroelastic Cylinders. Journal of Porous Media , 13 (2010) No. 4, 307-318. [3] M alla R eddy , P., M. T ajuddin . Exact Analysis of the Plane Strain Vibrations of Thick Walled Hollow Poroelastic Cylinders. International Journal of Solids Structures , 37 2 (2000), 3439-3456. [4] T ajuddin , M

Open access

Indrajit Roy, D. P. Acharya and Sourav Acharya

Propagation in Thermoelastic Plates. Int. J. Eng. Sci. , 29 (1991), No. 7 , 831–843. [12] I nan , E. Nonlocal Theory of Longitudinal Waves in Thermoelastic Bars. Le Matematiche , 46 (1991), No. 1 , 203–212. [13] A charya , D. P., A. M ondal . Propagation of Rayleigh Surface Waves with Small Wavelengths in Nonlocal Visco-elastic Solids. Sādhanā , 27 (2002), No. 6 , 605–612. [14] L azar , M., G. A. M augin , E. C. A ifantis . On a Theory of Nonlocal Elasticity of Bi-Helmholtz Type and Some Applications. Int. J. Solids Struct ., 43 (2006), No

Open access

B. I. Olajuwon and I. S. Oyelakin

. Unsteady Pseudoplastic Flow Near a Moving Wall. A. I. Ch. E. Journal, 5 (1959), 565, 6D. [12] Chung, B. J., A. Vaidya, R. Wulandana. Stability of Steady Flow in a Channel with Linear Temperature Dependent Viscosity. Int. J. of Appl. Math. and Mech., 2 (2006), No. 1, 24-33. [13] Hassanien, I. A, A. A. Abdullah, R. S. R. Gorla. Heat Transfer in a Power Law Fluid over a Non-isothermal Stretching Sheet. Math. Comp. Modeling, 28 (1998), 105-116. [14] Howell, T. G., D. R. Jeng, K. J. De Witt. Momentum and Heat Transfer on a

Open access

M. Arefi

. Bouiadjra Mohsmed, M. Mustapha, A. B. El Abbas. A Theoretical Analysis of Flexional Bending of Al/Al 2 O 3 S-FGM Thick Beams. Comput. Mater. Sci., 44 (2009), No. 4, 1344-1350. [13] Malekzadeh, P. G., M. R. Haghighii, M. M. Atashi. Out of Plane Free Vibration Analysis of Functionally Graded Circular Curved Beams Supported on Elastic Foundation. Int. J. Appl. Mech., 2 (2010), 635-646. [14] Yousefi, A., A. Rastgoo. Free Vibration of Functionally Graded Spatial Curved Beams. Compos. Struct., 93 (2011), No. 11, 3048-3056. [15

Open access

Mohamed Taha

Differential Equation. Commun. Nonlin. Sci. Numer. Simul., 13 (2008), No. 3, 539-546. [8] Jin, L. Homotopy PerturbationMethod for Solving Partial Differential Equations with Variable Coefficients. Int. J. Contemp. Math. Sciences, 3 (2008), No. 28, 1395-1407. [9] Ali, J. One Dimensionless Differential Method for Some Higher Order Boundary Value Problems in Finite Domain. Int. J. Contemp. Math. Sciences, 7 (2012), No. 6, 263-272. [10] Nayfeh, A. H., S. A. Nayfeh. On Nonlinear Modes of Continuous Systems. Vib. Acous., ASME, 116