Search Results

You are looking at 1 - 10 of 201 items for :

  • Mechanics and Fluid Dynamics x
Clear All
Open access

Sebastian Olesiak and Joanna Hydzik-Wiśniewska

device [ 6 , 7 , 8 ]. Counterfort drains are often deep trenches perpendicular to the slope, protected with non-woven geotextile and filled with aggregate. Drain pipes are laid on the bottom to remove the collected groundwater [ 3 , 4 , 5 , 6 , 9 , 10 ]. One of the basic design problems is a suitable location and depth of counterforts [ 11 ]. Deep drains (including counterfort drains) are usually designed using analytical methods [ 4 ]. These methods [ 12 , 13 , 14 ] are based on a number of assumptions concerning homogeneity and isotropy of the soil

Open access

Renata Patyńska

. [8] IPCC (1997). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual. [9] IPCC (2000). Good Practice Guidance and Uncertainty Management in National GHG Inventories. [10] IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. [11] KIDYBIŃSKI A., PATYŃSKA R., Analysis of gas-geodynamic phenomena in hard coal mines in Poland and in the world, MONOGRAPH, Scientific Works of GIG, Katowice, reviewed by Prof. Marian Kolarczyk, 2008, 1-110. [12

Open access

Andrzej Sawicki and Justyna Sławińska

-106, DOI: 10.1115/1.2130362. [12] SAWICKI A., MIERCZYŃSKI J., ŚWIDZIŃSKI W., Apparent creep of saturated sand caused by intrinsic cyclic loading, Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2), 06013002-3, DOI: (ASCE)GT.1943-5606.0001025. [13] SAWICKI A., ŚWIDZIŃSKI W., Mechanics of a sandy subsoil subjected to cyclic loadings, International Journal for Nu merical and Analytical Methods in Geomechanics, 1989, 13, 511-529, DOI: 10.1002/nag.1610130505. [14] SAWICKI A

Open access

Stanisław Kostecki

modelling of flow through moving water-control gates by vortex method. Pt. I. Problem formulation , Archives of Civil and Mechanical Engineering, 2008, Vol. VIII, No. 3, 73-89. [11] LEWIS R.I., Vortex Element Methods for Fluid Dynamic Analysis of Engineering Systems , Cambridge University Press, London, 2005. [12] LIANG H., ZONGA Z., ZOUB L., ZHOUA L., SUNA L., Vortex shedding from a two-dimensional cylinder beneath a rigid wall and a free surface according to the discrete vortex method , European Journal of Mechanics B/Fluids, 2014, Vol. 43, 110-119. [13] MAJDA A

Open access

Marek Kawa and Dariusz Łydżba

References AL-BITTAR T., SOUBRA A.H., 2013, Bearing capacity of strip footings on spatially random soils using sparse polynomial chaos expansion, International Journal for Numerical and Analytical Methods in Geomechanics, 37 (13), 2039-2060. FENTON G.A., GRIFFITHS D.V., 2003, Bearing-capacity prediction of spatially random cφ soils, Canadian Geotechnical Journal, 40 (1), 54-65. FENTON G.A., VANMARCKE E.H., 1990, Simulation of random fields via local average subdivision, Journal of Engineering Mechanics, 116

Open access

Agnieszka Rutkowska and Marek Ptak

, Journal of Business \& Economic Statistics, Vol. 13, No. 3, July 1995, pp. 277–280. [8] Chow Ven Te, Handbook of Applied Hydrology , McGraw-Hill Book Company, 1964. [9] Clarke R.T., Hydrological prediction in a non-stationary world , Hydrology & Earth System Sciences, 2007, pp. 408–414. [10] Demetrescu M., Hasler U., Effect of neglected deterministic seasonality on unit root tests , Statistical Papers 48, 2007, pp. 385–402. [11] Dickey D.A., Hasza D.P., Fuller W.A., Testing for Unit Roots in Seasonal Time Series , Journal of the American

Open access

Anna Uciechowska-Grakowicz and Tomasz Strzelecki

., S trzelecki T., Equations of Biot’s consolidation with Kelvin–Voight rheological frame , Studia Geotechnica et Mechanica, 2009, 31(2). [10] C oussy O., Revisiting the constitutive equations of unsaturated porous solids using a Lagrangian saturation concept , Int. J. Numer. Anal. Meth. Geomech. 2007, 31. [11] C oussy O., Mechanics and Physics of Porous Solids , John Wiley, 2010. [12] D erski W., Outline of continuum mechanics , PWN, Warszawa 1975, (in Polish). [13] D e G root S.R., M azur P., Non-equilibrium Thermodynamics

Open access

Tomasz Strzelecki and Michał Strzelecki

] COUSSY O., Mechanics and Physics of Porous Solids, JohnWiley, 2010. [12] DARCY H., Les fontaines publiques de la ville de Dijon, Paris, 1856. [13] DETOURNAY E., CHENG A.H.-D., Fundamentals of Poroelasticity, Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Methods, Pergamon Press, Oxford 1993. [14] DUPUIT J., Etudes theoriques et practiquessur le movement des eaux dans les canauxdecouvert et a travers les terrains permeable, Paris, 1863. [15] FORCHEHEIMER P

Open access

G.N. Pande and S. Pietruszczak

., TURU G., PANDE G.N., On the mechanical response of saturated cemented materials, Part II: experimental investigation and numerical simulations, Intern. Journ. Num. Anal. Meth. Geomech., 1995, 19, 563-571. [10] NUR A., BYERLEE J.D., An exact effective stress law for elastic deformation of rock with fluids, Journ. Geophys. Res., 2012, 76, 6414-6419. [11] BISHOP A.W., BLIGHT G.E., Some aspects of effective stress in saturated and partly saturated soils, Géotechnique, 1963, 13, 177-197. [12] MAŠÍN D., Predicting the

Open access

Łukasz Pieczara

References [1] BOBROWSKA A., Badania ultradźwiękowe w ocenie deterioracji skał, Geologia. Kwartalnik Akademii Górniczo-Hutniczej, 2009, 35(2/1), 633-639. [2] DOMONIK A., Textural rock anisotropy as a result of load memory exemplified by Cergowa sandstones from Komańcza, Geologija - Vilnius, 2008, 50, 121-125. DOI: 10.6001/geologija.v50ipriedas.1572. [3] DOMONIK A., Właściwości wytrzymałościowe i odkształceniowe skał. Część VI. Centralne Karpaty zachodnie, t. 13 and t. 14, Warsaw, Poland: Zakł. Geomech. IHiGI