Search Results

You are looking at 1 - 10 of 110 items for :

  • Differential Equations and Dynamical Systems x
Clear All
Open access

S. H. Saker, D. M. Abdou and I. Kubiaczyk

(2010), 11-18. [10] M aroni P., Sur I’inégalité d’Opial-Beesack, C. R. Acad. Sci. Paris Sér., 264 (1967), A62-A64. [11] O lech Z., A simple proof of a certain result of Z. Opial, Ann. Polon. Math., 8(1960), 61-63. [12] O pial Z., Sur une inégalité, Ann. Polon. Math., 8(1960), 29-32. [13] P ólya P., Problem 4264, Amer. Math. Monthly, 54(1947), 479. [14] R ozanova G.I., Integral inequalities with derivatives and with arbitrary convex functions, Mos. Gos. Ped. Inst. Vcen. Zap., 460(1972), 58-65. [15] S aker S.H., Some Opial

Open access

Werner Georg Nowak

References [1] H. Blichfeldt: A new principle in the geometry of numbers, with some applications. Trans. Amer. Math. Soc. 15 (1914) 227{235. [2] J.W.S. Cassels: Simultaneous Diophantine approximation. J. London Math. Soc. 30 (1955) 119{121. [3] H. Davenport: Simultaneous Diophantine approximation. Proc. London Math. Soc. 3 (2) (1952) 406{416. [4] H. Davenport: On a theorem of Furtwängler. J. London Math. Soc. 30 (1955) 185{195. [5] P.M. Gruber, C.G. Lekkerkerker: Geometry of

Open access

Diego Marques and Elaine Silva

. Austral. Math. Soc. 91 (2015) 29{33. [5] D. Marques, J. Ramirez: On transcendental analytic functions mapping an uncountable class of U-numbers into Liouville numbers. Proc. Japan Acad. Ser. A Math. Sci. 91 (2015) 25{28. [6] D. Marques, J. Ramirez, E. Silva: A note on lacunary power series with rational coe_cients. Bull. Austral. Math. Soc. 93 (2015) 1{3. [7] D. Marques, J. Schleischitz: On a problem posed by Mahler. J. Austral. Math. Soc. 100 (2016) 86{107.

Open access

Gurupadavva Ingalahalli and C.S. Bagewadi

.C. De, A.A. Shaikh, S. Biswas: On ϕ -recurrent Sasakian manifolds. Novi Sad J. Math. 33 (2003) 13–48. [6] H.G. Nagaraja, G. Somashekhara: τ -curvature tensor in ( k, µ )-contact metric manifolds. Mathematica Aeterna 2 (6) (2012) 523–532. [7] B.J. Papantonion: Contact Riemannian manifolds satisfying R ( ξ, X ) · R = 0 and ξ 2 ( k, µ )-nullity distribution. Yokohama Math. J. 40 (2) (1993) 149–161. [8] C.R. Premalatha, H.G. Nagaraja: On Generalized ( k, µ )-space forms. Journal of Tensor Society 7 (2013) 29–38. [9] A.A. Shaikh, K

Open access

Abderrahim Zagane and Mustapha Djaa

. Gudmundsson, E. Kappos: On the Geometry of the Tangent Bundle with the Cheeger-Gromoll Metric. Tokyo J. Math. 25 (1) (2002) 75–83. [10] O. Kowalski and M. Sekizawa: On Riemannian Geometry Of Tangent Sphere Bundles With Arbitrary Constant Radius. Archivum Mathematicum 44 (2008) 391–401. [11] E. Musso, F. Tricerri: Riemannian Metrics on Tangent Bundles. Ann. Mat. Pura Appl. 150 (4) (1988) 1–19. [12] A.A. Salimov, F. Agca: Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of Mathematics 8 (2) (2011) 243–255. [13] A.A

Open access

Anthony Sofo

-226. [17] R. Sitaramachandrarao: A formula of S. Ramanujan. J. Number Theory 25 (1987) 1-19. [18] A. Sofo: Computational Techniques for the Summation of Series. Kluwer Academic/Plenum Publishers, New York (2003). [19] A. Sofo: Integral identities for sums. Math. Commun. 13 (2) (2008) 303-309. [20] A. Sofo: Sums of derivatives of binomial coefficients. Adv. in Appl. Math. 42 (2009) 123-134. [21] A. Sofo: Integral forms associated with harmonic numbers. Appl. Math. Comput. 207 (2) (2009) 365

Open access

Albo Carlos Cavalheiro

York (1985). [11] B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972) 207{226. [12] A. Torchinsky: Real-Variable Methods in Harmonic Analysis. Academic Press, San Diego (1986). [13] B. O. Turesson: Nonlinear Potential Theory and Weighted Sobolev Spaces. Springer-Verlag (2000). Lecture Notes in Math.

Open access

M.S. Shahrokhi-Dehkordi

equations involving critical Sobolev exponents. Nonlinear Anal. 13 (1989) 879{902. [12] Q. Guo, J. Han, P. Niu: Existence and multiplicity of solutions for critical elliptic equations with multi-polar potentials in symmetric domains. Nonlinear Analysis 75 (2012) 5765{5786. [13] D. Kang: Solutions of the quasilinear elliptic problem with a critical Sobolev-Hardy exponent and a Hardy-type term. J. Math. Anal. Appl. 341 (2008) 764{782. [14] G. B. Li, X. Liang: The existence of nontrivial solutions to nonlinear elliptic equation

Open access

David Devadze

Publishers, New York (1953). [12] D. Devadze, V. Beridze: Optimality Conditions and Solution Algorithms of Optimal Control Problems for Nonlocal Boundary-Value Problems. Journal of Mathematical Sciences 218 (6) (2016) 731-736. [13] D. Sh. Devadze and V. Sh. Beridze: Optimality conditions for quasi-linear differential equations with nonlocal boundary conditions. Uspekhi Mat. Nauk 68 (4) (2013) 179-180. Translation in Russian Math. Surveys, 68 (2013), 773-775 [14] D. Devadze, M. Dumbadze: An Optimal Control Problem for a

Open access

Mohammad Ashraf, Nazia Parveen and Bilal Ahmad Wani

distance of the composition of two derivations to the generalized derivations. Glasgow Math. J. 33 (1991) 89{93. [6] S. U. Chase: A generalization of the ring of triangular matrices. Nagoya Math. J. 18 (1961) 13{25. [7] W. Cortes, C. Haetinger: On Jordan generalized higher derivations in rings. Turkish J. Math. 29 (1) (2005) 1{10. [8] M. Ferrero, C. Haetinger: Higher derivations and a theorem by Herstein. Quaest. Math. 25 (2) (2002) 249{257. [9] M. Ferrero, C. Haetinger: Higher derivations of semiprime rings