Search Results

You are looking at 1 - 10 of 608 items for :

  • Biotechnology x
Clear All
Open access

Anna Krzyżanowska, Eugeniusz Milchert and Marcin Bartkowiak

://www.raportroczny.ciech.com/download/CIECH_raport_roczny_2010.pdf 12. Kijeński, J. & Krawczyk, Z. (2007). Perspektywy rynku gliceryny. Przem.Chem. 86, 273. 13. Solvay - offi cial website. (2013). http://www.solvaychemicals.com/EN/products/chlorinated/Allylicproducts/Epichlorohydrin.aspx 14. Bioplastic innovation, website. (2013). http://bioplastic--innovation.com/2012/04/05/vinythai-starts-glycerin-to-ech--plant/#more-5889 15. Krzyżanowska, A. & Milchert, E. (2013). Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process

Open access

Beata Rukowicz, Ireneusz Miesiąc and Krzysztof Alejski

Literature Cited 1. Posada, J.A., Rincon, L.E. & Cardona, C.A. (2012). Design and analysis of biorefineries based on raw glycerol: Addressing the glycerol problem. Bioresource Technol. 111, 282–293. DOI: 10.1016/j.biortech.2012.01.151. 2. Xiu, Z.L. & Zeng, A.P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78, 917–926. DOI: 10.1007/s00253-008-1387-4. 3. Anand, P., Saxena, R.K. & Marwah, R.G. (2011). A novel downstream process for 1,3-propanediol

Open access

Anna Krzyżanowska, Eugeniusz Milchert and Marcin Bartkowiak

: 10.1016/j.cej.2012.07.061. 11. Spadło, M., Brzezicki, A., Iwański, L. & Forajter, M. (2012). Study on the synthesis of epichlorohydrin by dehydrochlorination of dichloropropanols from the glycerol hydrochlorination, Przem. Chem. 91, 1935-1940. (in Polish). 12. Krzyżanowska, A. & Milchert, E. (2013). Continuous dehydrochlorination of 13DCP2OL to epichlorohydrin: process parameters and by-products formation. Chem. Pap. 67, 1218-1224, DOI: 10.2478/s11696-012-0300-x. 13. Krzyżanowska, A., Milchert, E. & Paździoch, W

Open access

Grzegorz Lewandowski, Marcin Bartkowiak and Eugeniusz Milchert

the propylene oxide production. Przem. Chem. 73, 11-13. Gusevskaya, E. V., Karandin, A. V., Likholobov, V. A., Kondratiev, A. V. & Markevitch, V. S. (1993). Propylene oxide synthesis via propene acetoxylation over supported palladium and platinum catalysts followed by cracking of glycol acetates in a melt of potassium acetale, Applied Cat. A: General 97(1), 1-15. DOI: 10.1016/0926-860X(93)80062-U. Murphy, C. D. & Warner R. J. (2003). US Patent No. 6,593,491 B2. Washington D. C.: U. S. Patent and Trademark

Open access

Haifeng Ji, Yabin Niu, Dongming Liu, Weidong Wang and Chuanbo Dai

. (2002). Organic Chemistry (4th ed.). New York, USA: Oxford University Press. 13. Halpern M.P. (2012). Transfer Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA. 14. Sankarshana, T., Yadagiri, E. & Murthy, J.S.N. (2014). Phase Transfer Catalysis:Oxidation of 2-Methyl-1-butanol. Chin. J. Chem. Eng. 22(9), 1000-1004. DOI: 10.1016/j. cjche.2014.06.023. 15. El-Sayed, A.M., Allah, O.A.A. & El-Saghier, A.M.M. (2014). Synthesis and Reactions of Five-Membered Heterocycles Using Phase Transfer Catalyst (PTC) Techniques. J. Chem. 2014

Open access

Jolanta Świderska, Zbigniew Czech, Waldemar Świderski and Agnieszka Kowalczyk

.R. & Ferracane, J.L. (2000). Assessing the effect of composite formulation on polymerization stress, J. Am. Dent. Assoc. 131, 497-503. 11. Czech, Z., Kowalczyk, A., Kabatc J. & Świderska, J. (2012). Solvent-based of acrylic pressure-sensitive adhesive of low shrinkage, Eur. Polym. J. 48, 1446-1454. 12. Kemp-Scholte, C.M. & Davidson, C.L. (1990). Complete marginal seal of Class V resin composite restorations effected by increasing fl exibility, J. Dent. Res. 69, 1240-1243. 13. Czech, Z., Butwin, A., Kabatc, J. & Świderska, J

Open access

Hajir Karimi, Aboalfazl Askari and Elahe Mansouri

). Simulation and modeling of catalytic reforming process. Petrol. Coal. 54 (1), 76-84. 11. West, A.H., Posarac, D. & Ellis, N. (2008). Assessment of four biodiesel production processes using HYSYS Plant, Bioresour. Technol. 99 (4), 6587-6601. DOI: 10.1016/j.biortech. 2007.11.046. 12. Agarwal, M., Singh, K. & Chaurasia S.P. (2012). Simulation & sensitivity analysis for biodiesel production in a reactive distillation column. Pol. J. Chem. Tech. 14 (3), 59-65. DOI: 10.2478/v10026-012-0085-2. 13. Seader, J.D. & Henley Ernest, J

Open access

Chuan-Jun Yue, Qiu-Neng Xu, Li-Ping Gu and Jin-Fang Wang

to Nitrogen Fixation. J. Am. Chem. Soc. 138, 13379–13389. DOI: 10.1021/jacs.6b08009. 11. Schlogl, R. (2015). Heterogeneous catalysis [J]. Angew. Chem. Int. Ed . 54, 3465–3520. DOI: 10.1002/anie.201410738. 12. Nishimura, S. & Ebitani, K. (2016). Recent advances in heterogeneous catalysis with controlled nanostructured precious monometals. Chem. Cat. Chem . 8, 2303–2316. DOI: 10.1002/cctc.201600309. 13. Corma, A., García, H. & Xamena, F.X.L. (2010). Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606

Open access

Abdessalam Hadjeb, Mohamed Bouzit, Youcef Kamla and Houari Ameur

LITERATURE CITED 1. Bertrand, J. & Couderc, J.P. (1982). Agitation of pseudoplasticfluids by two blade impeller. Can. J. Chem. Eng. 60, 738–747. DOI: 10.1002/cjce.5450600604. [in French]. 2. Bouzit, M., Benali, L., Hachemi, M. & Bouzit, F. (2006). CFD simulation of 3D velocity profile of paddle agitator and two blade impeller in stirred vessel with a highly viscous Newtonian fluid. J. Appl. Sci. 6(13), 2733–2740. DOI: 10.3923/jas.2006.2733.2740. 3. Simons, T.A.H., Bensmann, S., Zigan, S., Feise, H.J., Zetzener, H. & Kwade, A. (2016

Open access

Agnieszka Wołosiak-Hnat, Eugeniusz Milchert, Grzegorz Lewandowski and Barbara Grzmil

performance carpet fiber (1995). Int. Fiber. J. Oct. 1995. Greene, R.N. (1990). Copolyetherester elastomer with poly(1,3-propylene terephtalate) hard segment. U.S. Patent No. 4,937,314. Xiu, Z.-L. & Zeng, A.-P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78, 917-926. DOI: 10.1007/s00253-008-1387-4. Ma, L. & He, D. (2009). Hydrogenolysis of glycerol to propanediols over highly active Ru