Search Results

1 - 10 of 144 items :

  • General Mathematics x
Clear All
Algebraic properties of the binomial edge ideal of a complete bipartite graph

References [1] M. B rodmann , R. S harp : Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambr. Stud. in Advanced Math., No. 60. Cambridge University Press, (1998). [2] W. B runs , J. H erzog : Cohen-Macaulay Rings, Cambridge University Press, 1993. [3] D. E isenbud : Commutative Algebra (with a View Toward Algebraic Geometry). Springer-Verlag, 1995. [4] V. E ne , J. H erzog and T. H ibi : Cohen Macaulay Binomial edge ideals. Nagoya Math. J. 204 (2011) 57-68. [5] S. G oto : Approximately Cohen

Open access
Some Hermite-Hadamard type integral inequalities for operator AG-preinvex functions

functions, arXiv:1306.0730v1 [6] R. A. Horn, C. R. Johnson, Matrix Analysis , Cambridge University Press, 2012. [7] F. Kittaneh, Norm inequalities for fractional powers of positive operators, Lett. Math. Phys ., 27 (1993), 279–285. [8] D. S. Mitrinović, I. B. Lacković, Hermite and convexity, Aequationes Math ., 28 (1985), 229–232. [9] S. R. Mohan, S. K. Neogy, On invex sets and preinvex function, J. Math. Anal. Appl ., 189 (1995), 901–908. [10] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and

Open access
Exact controllability of fractional neutral integro-differential systems with state-dependent delay in Banach spaces

-24. [9] B. Ahmad, S. K. Ntouyas and A. Alsaed, Existence of solutions for fractional q-integro-difference inclusions with fractional q-integral boundary conditions, Advances in Difference Equations, 2014:257, 1{18. [10] R. P. Agarwal, B. D. Andrade, On fractional integro-differential equations with state-dependent delay, Comp. Math. App., 62(2011), 1143{1149. [11] M. Benchohra, F. Berhoun, Impulsive fractional differential equations with state-dependent delay, Commun. Appl. Anal., 14(2)(2010), 213{224. [12] K. Aissani and

Open access
Retrospective Data Analysis of Anterior Cervical Discectomies and Fusion Without Plate and Screws

cervical radiculopathy and myelopathy? BMJ , 341 , c3108. Hermansen, A. (2015). Clinical and patient-reported outcomes after anterior cervical decompression and fusion surgery. Linköping University Medical Dissertations No. 1443. Iyer, S., Kim, H. J. (2016). Cervical radiculopathy. Curr. Rev. Musculoskelet. Med., 9 (3), 272–280. Kim, H. J., Nemani, V. M., Piyaskulkaew, C., Vargas, S. R., Riew, K. D. (2016). Cervical Radiculopathy: Incidence and Treatment of 1,420 Consecutive Cases. Asian Spine J. , 10 (2), 231–237. Kim, J. H., Park, J. Y

Open access
Preventing Potential Backdoors in Bike Algorithm

, Springer-Verlag, Berlin, 2016 pp. 346–367. [3] BERNSTEIN, D. J.—LANGE, T—NIEDERHAGEN, R..: Dual EC: A standardized back door. In: The New Codebreakers (Peter Y. A. Ryan, David Naccache, Jean-Jacques Quisquater, eds.). L ecture Notes in Comput. Sci. Vol. 9100, Springer-Verlag, Berlin, 2016. pp. 256–281. [4] CHEN, L.—CHEN, L.—JORDAN, S.—LIU, Y-K.—MOODY, D.—PERALTA, R..–PEH.LNEH., R..—SMITH-TONE, D.: Report on Post-Quantum Cryptography. National Institute of Standards and Technology (NIST), US Department of Commerce, USA, 2016. https://doi.org/10

Open access
Finite Element Analysis of Influence of Non-homogenous Temperature Field on Designed Lifetime of Spatial Structural Elements under Creep Conditions

“continual fracture”, may be fulfilled efficiently using phenomenological scalar damage parameter, proposed in the works of V. Bolotin, L. Kachanov and Yu. Rabotnov [ 7 , 13 ]. This approach is developed and implemented for different loading conditions in the publications of Ukrainian scientists M. Bobyr, V. Golub, G. L’vov, Yu. Shevchenko [ 5 , 6 , 9 , 14 ] and foreign ones (Chen G., Hayhurst D., Lemaitre J., Murakami S., Otevrel I., etc.), particularly in [ 10 – 12 , 15 , 16 ]. It is shown that the damage accumulation process should be taking into account for

Open access
Nonlinear waves in a simple model of high-grade glioma

biological literature, there is a vast range of values for the diffusion and proliferation coefficients. To carry out the estimations, we resort to the following value for the proliferation ρ = 0.2 day −1 , which is in the range [0.01–0.5] day −1 , taken from [ 28 , 54 ] and D = 0.05 mm 2 /day (which is in the range [0.0004–0.1] mm 2 /day) [ 39 ]. Finally, we take α = 1/10 day −1 , L = 85 mm, x 0 = 10 mm, c = c min = 2 ( 1 − β ) , $\begin{array}{} c=c_{\text{min}}=2\sqrt{(1-\beta)}, \end{array} $ M = 0.3, b = 0.005, a = ( c − c 2 − 4 ( 1 − β − V

Open access
Weighted Reverse Order Law for the Weighted Moore-Penrose Inverse in Rings with Involution

References 1. BoASSO, E. - On the Moore-Penrose inverse in C *-algebras, Extracta Math., 21 (2006), 93-106. 2. BOASSO, E.; CVETKOVIČ-ILIÓ, D.S.; HARTE, R. - On weighted reverse order laws for the Moore-Penrose inverse and K-inverses, Comm. Algebra, 40 (2012), 959-971. 10.1080/00927872.2010.543364 3. DJORDJEVIČ, D.S.; RAKOČEVIÓ, V. - Lectures on generalized inverses, University of Nis, Faculty of Sciences and Mathematics, NiS, 2008. 4. Koliha, J.J.; DJORDJEVIÓ, D.S.; CVETKOVIÓ, D. - Moore-Penrose inverse in rings with involution, Linear Algebra

Open access
Formal analysis of security protocols for wireless sensor networks

., Washington, 2001, pp. 82-96. [6] GOLLMANN, D.: Protocol analysis for concrete environments, in: Proc. of the 10th Internat. Conf. on Computer Aided Systems Theory-EUROCAST ’05 (R. Moreno-D´ıaz et al., eds.), Lect. Notes Comput. Sci., Vol. 3643, Springer, Berlin, 2005, pp. 365-372. [7] MENEZES, A. - VAN OORSHOT, P. - VANSTONE, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton, FL, 1997. [8] TOBARRA, L. ET AL.: Model checking wireless sensor network security protocols: Tiny- Sec + LEAP, in: Proc. of IFIP WG 6.8 1st

Open access
Existence and Stability of Periodic Solutions for Impulsive Fuzzy Cohen-Grossberg Neural Networks on Time Scales

References 1. Arik, S.; Orman, Z. - Global stability analysis of Cohen-Grossberg neural networks with time varying delays, Physics Letters A, 341 (2005), 410-421. 10.1016/j.physleta.2005.04.095 2. Bai, C. - Stability analysis of Cohen-Grossberg BAM neural networks with delays and impulses, Chaos Solitons Fractals, 35 (2008), 263-267. 10.1016/j.chaos.2006.05.043 3. Bi, Li; Bohner, M.; Fan, M. - Periodic solutions of functional dynamic equations with infinite delay, Nonlinear Anal., 68 (2008), 1226-1245. 10.1016/j

Open access