Search Results

1 - 6 of 6 items :

  • Numerical and Computational Mathematics x
Clear All
A contribution to the mathematical modeling of immune-cancer competition

References 1. D. Hanahan and R. Weinberg, The hallmarks of cancer, Cell, vol. 100, no. 1, pp. 57-70, 2000. 2. D. Hanahan and R. Weinberg, Hallmarks of cancer: the next generation, Cell, vol. 144, no. 5, pp. 646- 674, 2011. 3. A. Bellouquid, E. D. Angelis, and D. Knopoff, From the modeling of the immune hallmarks of cancer to a black swan in biology, Mathematical Models and Methods in Applied Sciences, vol. 23, no. 05, pp. 949-978, 2013. 4. L. Arlotti, M. Lachowicz, and A. Gamba, A kinetic model

Open access
A forecasting performance comparison of dynamic factor models based on static and dynamic methods

, Econometric theory, vol. 17, no. 06, pp. 1113–1141, 2001. 13. M. Hallin and M. Lippi, Factor models in high-dimensional time series: A time-domain approach, Stochastic Processes and their Applications, vol. 123, no. 7, pp. 2678–2695, 2013. 14. M. Forni, D. Giannone, M. Lippi, and L. Reichlin, Opening the black box: Structural factor models with large cross sections, Econometric Theory, vol. 25, no. 05, pp. 1319–1347, 2009. 15. R. Giacomini and H. White, Tests of conditional predictive ability, Econometrica, vol. 74, no. 6, pp

Open access
Les Huit Premiers Travaux de Pierre Liardet

. [7] _____ : Sur une conjecture de Serge Lang , C. R. Acad. Sci. Paris Sér. A 279 (1974), 435–437. [8] _____ : Sur une conjecture de Serge Lang , in Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974), Soc. Math. France, Paris, 1975, 187–210. Astérisque, Nos. 24–25. [9] _____ : Transformations Rationnelles et Ensembles Algébriques , Thèse 3e cycle, Université de Provence, Faculté des Sciences 1970. [10] _____ : Première thèse: Sur la Stabilité Rationnelle ou Algébrique d’ensembles de Nombres Algébriques , Deuxième thèse

Open access
Hilsum–Skandalis maps as Frobenius adjunctions with application to geometric morphisms

of `Poisson Geometry, Deformation Quantisation and Group Representations' London Math. Soc. Lecture Note Ser. 323, Cambridge University Press, Cambridge, (2005) 145-272. [Mr96] Mrcun, J. Stability and invariants of Hilsum{Skandalis maps, Ph.D. thesis, Utrecht University, (1996). [T10] Townsend, C.F. A representation theorem for geometric morphisms. Applied Categorical Structures. 18 (2010) 573-583. [T12] Townsend, C.F. Aspects of slice stability in Locale Theory Georgian Mathematical Journal. Vol. 19, Issue 2, (2012

Open access
Sofic Measures and Densities of Level Sets

://projecteuclid.org/download/pdf_1/euclid.aoms/1177696962 [8] FENG, D. J.: Smoothness of the L q -spectrum of self-similar measures with overlaps , J. Lond. Math. Soc. 68 (2003) 102–118; http://www.math.cuhk.edu.hk/~djfeng/fengpapers/jlms2003/jlmsf.pdf [9] FENG, D.-J.: Lyapunov exponents for products of matrices and multifractal analysis. Part I: Positive matrices , Israel J. of Math., 138 (2003), 353–376; http://www.math.cuhk.edu.hk/%7Edjfeng/djfeng1.html [10] FENG, D.-J.: Lyapunov exponents for products of matrices and multifractal analysis. Part II: General matrices

Open access
Fractional Hermite-Hadmard inequalities for convex functions and applications

-time differentiable functions which are m-convex, Analysis 32, 247-262 (2012)/DOI 10.1524/anly.2012.1167. [5] W.-D. Jiang, D.-W. Niu, Y. Hua, F. Qi, Generalizations of Hermite-Hadamard inequality to n-time differentiable functions which are s-convex in the second sense, Analysis 32, 209-220 (2012)/DOI 10.1524/anly.2012.1161. [6] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B.V., Amsterdam, Netherlands, (2006). [7] S. K. Khattri, Three proofs of the inequality e <(1

Open access