Search Results

1 - 10 of 220 items :

  • Nanomaterials x
Clear All
The Role of Focus Position in Single Pulse Laser Drilling of Highly Reflecting Materials

. edition. Wiley-Interscience, 1998. 69. [10] Ready J. F., Farson D.: LIA Handbook of Laser Materials Processing. Laser Institute of America Magnolia Publishing Inc., 2001. 182. [11] Naeem M.: Laser processing of reflective materials . (accessed: 2019. 05. 28.) [12] Tradowsky K.: A LASER ABC-je . Műszaki Könyvkiadó, Budapest, 1971. 99–100. [13] Stephen A.: Laser micro drilling methods for perforation of aircraft suction surfaces . Elsevier Science Direct Procedia CIRP 74, 2018

Open access
Machinability of Ni-based Superalloys by Indexable End Mills

References [1] Sajjadi S. A., Nategh S., Isac M., Zebarjad S. M.: Tensile deformation mechanisms at different temperatures in the Ni-base superalloy GTD-111 . Journal of Materials Processing Technology 155–156. (2004) 1900–1904. [2] Bhadeshia H. K. D. H.: Recrystallisation of practical mechanically alloyed iron-base and nickel-base superalloys. Materials Science and Engineering A 223. (1997) 64–77. [3] Kodácsy J., Viharos Zs. J., Kovács Zs.: A

Open access
The Replacement of Resistance Welding with Laser Beam Welding

.jmatprotec.2017.02.008 [5] Akhter R., Steen W. M., Cruciani D.: Laser welding of zinc coated steel. Proceedings of 6th International Conference Lasers in Manufacturing (1989), 105–120. [6] Chen G., Mei L., Zhang M., Zhang Y., Wang Z.: Research on key influence factors of laser overlap welding of automobile body galvanized steel. Optics & Laser Technology, 45/1. (2013) 726–733. [7] Chen H. C., Pinkerton A. J., Li, L. Liu Z., Mistry A. T.: Gap-free fibre laser welding of Zn-coated steel on Al alloy for light

Open access
Addictive and Substractive Combined Production of Cobalt-Crome-Based Frames in Dentistry

.: Three-dimensional evaluation of gaps associated with fi-xed dental prostheses fabricated with new technologies . The Journal of Prosthetic Dentistry, 112/6. (2014) 1432–1436. [4] van Noort R.: The future of dental devices is digital . Dental Materials, 28/1. (2012) 3–12. [5] Kim D. Y., Kim J. H., Kim H. Y., Kim W. C.: Comparison and evaluation of marginal and internal gaps in cobalt-chromium alloy copings fabricated using subtractive and additive manufacturing

Open access
Examination of Layer Thicknesses of a Model Produced by Fused Filament Extrusion

.addma.2018.10.014 [3] Brenken B., Barocio E., Favaloro A., Kunc V., Pipes R. B.: Fused filament fabrication of fiber reinforced polymers: A review . Additive Manufacturing, 21. (2018) 1–16. [4] Nötzel D., Eickhoff R., Hanemann T.: Fused filament fabrication of small ceramic components. Materials, 11/8. (2018) 1463–1468. [5] Gibson M. A., Mykulowycz N. M., Shim J., Fontana R., Schmitt P., Roberts A., Ketkaew J., Shao L., Chen W., Bordeenithikasem P., Myerberg J. S., Fulop R

Open access
A New Method for Determining the Pullability of Composite Reinforcing Ceramic Fibres

] Miracle D. B.: Metal matrix composites From science to technological significance . Composite Science and Technology, 65/15–16. (2005) 2526–2540. [6] Evans A, Marchi CS, Mortensen A: Metal matrix composites in industry: an introduction and a survey . Kluwer Academic Publishers, Dordrecht, 2003. [7] Ashby M., Sherdiff H., Cebon D.: Materials, engineering, science, processing and design . Butter-worth-Heinemann, Oxford, 2007. [8] Michaud V., Mortensen A.: Infiltration processing of fibre reinforced

Open access
Examination of Laser Microwelded Joints of Additively Manufactured Individual Implants

Design, 28/7. (2008) 2093–2098. [14] C lark D., Bache M., Whittaker M.: Shaped metal deposition of a nickel alloy for aero engine applications. Journal of Materials Processing Technology, 203/1-3. (2008) 439–448. [15] Baufeld B., Van der Biest O., Gault R.: Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: Microstructure and mechanical properties . Materials and Design, 31/1. (2010) 106–111.

Open access
Microwave dielectric properties of BiFeO3 multiferoic films deposited on conductive layers

[1] Fiebig M., J. Phys. D, 38 (2005). R123. [2] Smolenskii G.A., Chupis I.E., Sov. Phys. Usp., 25 (1982), 475. [3] Wang J., Neaton J.B., Zheng H., Nagarajan V., Ogale S.B., Liu B., Vehland D., Vaithyanathan V., Schlom D.G., Waghmare U.V., Spaldin N.A., Rabe K.M., Wuttig M., Ramesh R., Science, 299 (2003), 1719. [4] Yuan G. L

Open access
A general formula for the transmission coefficient through a barrier and application to I–V characteristic

[1] G.J. PAPADOPOULOS, J. Non-Crystalline Solids 53 (2009) 1376. [2] R. TSU, L. ESAKI, Appl. Phys. Lett. 22 (1973) 562. [3] D.K. FERRY, S.M. GOODNICK, Transport in Nanostructures, Cambridge: Cambridge University Press (1997). [4] P. SU, Z. CAO, K. CHEN, C. YIN, Q. SHEN, J. Phys. A: Math. Theor. 41 (2008) 465301.

Open access
Structural and conductivity studies of LiNi0.5Mn0.5O2 cathode materials for lithium-ion batteries

, similar to pristine LiNiO 2 [27 – 29] . It was also found that the density of the sintered pellet is 82 % of the theoretical density. 3.2 FESEM analysis Fig. 2 shows the FESEM photographs of the synthesized LiNi 0.5 Mn 0.05 O 2 cathode material. The FESEM image reveals that the material is comprised of well crystallized particles with no obvious aggregation and well-shaped, smooth crystals with sharp edges morphology [30 – 33] . As seen in Fig. 2 the aggregated particles of the material are spherical in shape, having a diameter of 10 µm. The cathode

Open access