Search Results

1 - 10 of 57 items :

  • Mechanics and Fluid Dynamics x
Clear All
Experimental and statistical analysis of blast-induced ground vibrations (BIGV) prediction in Senegal’s quarry

/s) Longitudinal Vertical Transversal DG 606 15 653 1.4 2.47 0.82 2.47 1 P1 (Lower exploitation level) 84 15 2022 15.94 31.82 23.5 31.82 P1 (Upper exploitation level) 143 15 139 7 8.76 4.7 8.76 Lake Ddoudj 291 15 2020 8 10.54 7.43 10.54 Macodo 529 15 1318 2.67 2.8 1.01 2.8 DG 613 30 653 1.71 4.12 1.27 4.12 2 P1 (Upper exploitation level) 136 30 139 11.05 13.84 7.62 13.84 P1 (Lower exploitation level) 92 30 2022 20

Open access
The Consequences of Non-Uniform Founding of Concrete Tank in Weak Wet Subsoil

the changes in crack width as well as displacement along the crack ( Fig. 10 ). The location of the gauges is shown in Figure 11 . The measurement results are shown here as well. An analysis of the data from Figure 11 indicates that the crack measured with gauge No. 4 in the chamber No. 1 is immovable. The remaining cracks in this chamber show little changes in width (up to 0.2 mm). They also show very little displacement along crack (up to 0.05 mm), except the gauge No. 6 fixed next to longitudinal partition wall in the region with piles. This gauge was found to

Open access
Random analysis of bearing capacity of square footing using the LAS procedure

References [1] EN 1990:2002. Eurocode: Basis of structural design. CEN, European Committee for Standardization, Brussels. [2] FENTON G.A., GRIFFITHS D.V., Bearing-capacity prediction of spatially random c φ soils, Canadian Geotechnical Journal, 2003, 40(1), 54-65. [3] FENTON G.A., GRIFFITHS D.V., Risk Assessment in Geotechnical Engineering, John Wiley & Sons, New York 2008. [4] FENTON G.A., VANMARCKE E.H., Simulation of random fields via local average subdivision, Journal of Engineering Mechanics

Open access
ON THE INTERPRETATION OF THE NEEDLE PROBE TEST RESULTS: THERMAL CONDUCTIVITY MEASUREMENT OF CLAYEY SOILS

References [1] ABRAMOWITZ M., STEGUN I.A., Handbook of mathematical functions, Dover Publications, Inc., New York 1972. [2] ASTM D5334-05 Standard, Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure, 2005. [3] CARSLAW H.S., JAEGER J.C., Conduction of heat in solids, Second edition, Oxford, Clarendon Press, 1959. [4] DE VRIES D.A., Heat transfer in soils, [in:] Heat and Mass Transfer in the Biosphere, I. Transfer Processes in

Open access
Stress states caused in chamber of reinforced concrete grain silo by non-centric emptying on large eccentricities

reference factor, C op 0.5 a) Load combination I – symmetrical horizontal pressure and surface friction in connection with combination of randomly applied local loads on each silo ring respectively ( Fig. 5a) , Figure 5 Values of components of bulk solid pressure on the wall of the silo with diameter d c =10 m and height H =25 m during emptying on large eccentricities e 0(2) = 0 . 375 d c : a) Combination I; b) Combination II. b) Load combination II – non-symmetrical pressure on the chamber perimeter, taking into account the

Open access
Numerical solution through mathematical modelling of unsteady MHD flow past a semi-infinite vertical moving plate with chemical reaction and radiation

) = u ′ ( t ′ ) V 0 , t = ρ V 0 2 μ t ′ ,     G r = μ g β ( T w − T ∞ ) ρ V 0 3 , G m = μ g β ′ ( C w − C ∞ ) ρ V 0 3 $$\begin{matrix}U\left( t \right)=\frac{{u}'\left( {{t}'} \right)}{{{V}_{0}}},t=\frac{\rho V_{0}^{2}}{\mu }{t}',\,\,Gr=\frac{\mu g\beta \left( {{T}_{w}}-{{T}_{\infty }} \right)}{\rho V_{0}^{3}}, \\Gm=\frac{\mu g{\beta }'\left( {{C}_{w}}-{{C}_{\infty }} \right)}{\rho V_{0}^{3}} \\\end{matrix}$$ (10) M = σ B 0 2 μ ρ 2 V 0 2 ,     K = K ′ V 0 2 ρ 2 μ 2 ,           γ = K 1 μ ρ V 0 2 ,       S c = μ ρ D , φ = Q 0 μ ρ 2 C p V 0 2

Open access
Analysis of Prognosis of Lowland River Bed Erosion Based on Geotechnical Parameters

REFERENCES [1] B riaud J.-L., C hen H.-C., N urtjahyo Y., L i P., W ang J., Complex pier scour and contraction scour in cohesive soils , Transportation Research Board National Research Council. (NCHRP REPORT 24–15, 2003). [2] J acobs W., L e H ir P., V an K esteren W., C ann P., Erosion threshold of sand – mud mixtures , Continental Shelf Research, 2011, 31, 14–25. DOI: 10.1016/j.crs.2010.05.012. [3] M łynarek Z., Czynniki wpływające na opór stożka podczas statycznego sondowania gruntów spoistych , Poznań: Roczniki Akademii

Open access
Failure Criterion for Brick Masonry: A Micro-Mechanics Approach

, International Journal of Analytical and Numerical Methods in Geomechanics, 2010, 34(3), 221-247, DOI: 10.1002/nag.799. [4] JAEGER J.C., Shear failure of anisotropic rocks , Geological Magazine, 1960, 97(1), 65-72. [5] KAWA M., PIETRUSZCZAK S., SHIEH-BEYGI B., Limit states for brick masonry based on homogenization approach , International Journal of Solids and Structures, 2008, 45 (3-4), 998-1016, DOI: 10.1016/ j.ijsolstr.2007.09.015. [6] MILANI G., LOURENCO P.B., TRALLI A., Homogenised limit analysis of masonry walls, part I: failure surfaces; part II: structural

Open access
Efficiency of the Needle Probe Test for Evaluation of Thermal Conductivity of Composite Materials: Two-Scale Analysis

References [1] MOHSENIN N.N., Thermal properties of foods and agricultural materials, Gordon and Breach, New York, 1980. [2] CARSLAW H.S., JAEGER J.C., Conduction of heat in solids, Clarendon Press, Oxford, 1959. [3] RICHE F., SCHNEEBELI M., Microstructural change around a needle probe to measure thermal conductivity of snow, Journal of Glaciology, 2010, Vol. 56, No. 199. [4] FONTANA A.J., VERITH J., IKEDIALA J., REYES J., WACKER B., Thermal properties of selected foods using dual needle heat

Open access
Effect of Geotextile Reinforcement on Shear Strength of Sandy Soil: Laboratory Study

triaxial tests of fiber-reinforced sand, Proceedings of the 4th Asian Regional Conference on Geosynthetics Shanghai, China, 2008. [12] CHEN X., ZHANG J., LI Z., Shear behaviour of a geogridreinforced coarse-grained soil based on large-scale triaxial tests, Geotextiles and Geomembranes, 2014, 42(4), 312-328, DOI: 10.1016/j.geotexmem.2014.05.004. [13] CONSOLI N.C., VENDRUSCOLO M.A., FONINI A., DALLA ROSA F., Fiber reinforcement effects on sand considering a wide cementation range, Geotextextiles and Geomembranes, 2009, 27 (3), 196-203, DOI

Open access