Search Results

1 - 10 of 158 items :

  • General Mathematics x
Clear All
An explicit formula for derivative polynomials of the tangent function

tangent function, Tamkang J. Math ., 34 (2003), no. 4, 351–355; Available online at http://dx.doi.org/10.5556/j.tkjm.34.2003.236 . [4] C.-P. Chen, F. Qi, A double inequality for remainder of power series of tangent function, RGMIA Res. Rep. Coll ., 5 (2002), Suppl., Art. 2; Available online at http://rgmia.org/v5(E).php . [5] B.-N. Guo, Q.-M. Luo, F. Qi, Sharpening and generalizations of Shafer-Fink’s double inequality for the arc sine function, Filomat , 27 (2013), no. 2, 261–265; Available online at http://dx.doi.org/10.2298/FIL1302261G

Open access
Caterpillars Have Antimagic Orientations

version, 1994), 108–109. [5] J. A. Gallian. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics 5 (2007), # DS6. [6] R. L. Graham, D. E. Knuth; O. Patashnik. Concrete Mathematics , Addison-Wesley, Reading Ma., (1994). [7] P. Kovář. Antimagic labeling of caterpillars. 9th International Workshop On Graph Labeling (Open problems), 2016. [8] A. Lozano, M. Mora, and C. Seara. Antimagic Labelings of Caterpillars, preprint. arXiv:1708.00624v1 [mathCO] 2 Aug 2017. [9] T. Li, Z. Song, G. Wang, D. Yang, and C. Zang

Open access
Properties of nearly ω-continuous multifunctions

References [1] K. Al-Zoubi, B. Al-Nashef, The topology of ω-open subsets, Al-Manarah (9) (2003), 169–179. [2] A. Al-Omari, M. S. M. Noorani, Contra-ω-continuous and almost ω-continuous functions, Int. J. Math. Math. Sci. (9) (2007), 169–179. [3] C. Berge, Espaces topologiques functions multivoques , Paris, Dunod (1959). [4] D. Carnahan, Locally nearly compact spaces, Boll. Unione Math. Ital , (4) 6 (1972), 143–153. [5] E. Ekici, Nearly continuous multifunctions, Acta Math. Univ. Comenian , 72 (2003), 229–235. [6

Open access
Classification of Filiform Lie Algebras up to dimension 7 Over Finite Fields

problemas de la Teorfifia de Lie, Actas de las VI Jornadas de Matemfiatica Discreta y Algorfifitmica (VIJMDA), (2008) 485-492. [11] J. Núñez, A. Pacheco y M. T. Villar, Study of a family of Lie algebras over Z=3Z, International Journal of Applied Mathematics and Statistics, Special volume 7:W10 (2010), 40-45. [12] C. Schneider, A computer-based approach to the classification of nilpotent Lie algebras, Experiment. Math. 14:2 (2005), 153-160. 13] V.S. Varadarajan. Lie Groups, Lie Algebras and their Representations. Springer

Open access
On real valued ω-continuous functions

Abstract

The aim of this paper is to introduce and study upper and lower ω-continuous functions. Some characterizations and several properties concerning upper (resp. lower) ω-continuous functions are obtained.

Open access
Θ-modifications on weak spaces

. Hungar. , 123 (2009),223–228. [6] W. K. Min, A note on d and ?–modifications, Acta Math. Hungar. , 132 (2011), 107–112. [7] W. K. Min, Mixed weak continuity on generalized topological spaces, Acta Math. Hungar. , 132 (2011), 339–347. [8] W. K. Min, On weakly w t g –closed sets in associated w –spaces, International Journal of Pure an Applied Mathematics , 113 (1) (2017), 181–188. [9] W. K. Min and Y. K. Kim, On weak structures and w–spaces, Far East Journal of Mathematical Sciences , 97 (5) (2015), 549–561. [10] W. K. Min

Open access
On the sum of the Lah numbers and zeros of the Kummer confluent hypergeometric function

References [1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , National Bureau of Standards, Applied Mathematics Series 55 , 10th printing, Dover Publications, New York and Washington, 1972. [2] J. C. Ahuja and E. A. Enneking, Concavity property and a recurrence relation for associated Lah numbers, Fibonacci Quart ., 17 (2) (1979), 158–161. [3] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions , Revised and Enlarged Edition, D. Reidel

Open access
A Parametric Network Approach for Concepts Hierarchy Generation in Text Corpus

References [1] Ahuja,R., Magnanti,T. and Orlin,J., Network Flows. Theory, algorithms and applications, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1993 [2] Ahuja,R., Stein,C., Tarjan,R.E., Orlin, J. Improved algorithms for bipar- tite network ow, SIAM Journal on Computing, 23(5), 906-933 [3] Bichot,C-E., Siarry,P., Graph Partitioning: Optimisation and Applications, ISTE Wiley, 2011 [4] Goldberg,A., Two-Level Push-Relabel Algorithm for the Maximum Flow Problem Lecture Notes in Computer

Open access
Oblivious Lookup-Tables

against chosen ciphertext attacks , in: Advances in Cryptology—CRYPTO ’91 (J. Feigenbaum, ed.), Lecture Notes in Comput. Sci., Vol. 576, Springer-Verlag, Berlin, 1992, pp. 445–456. [5] GENTRY, C.: Computing arbitrary functions of encrypted data , Commun. ACM 53 (2010), 97–105. [6] KATZ, J.—LINDELL, Y.: Introduction to Modern Cryptography—Principles and Protocols , Chapman and Hall/CRC Press, London, 2007. [7] KENNEDY, W. S.—KOLESNIKOV, V.—WILFONG, G.: Overlaying circuit clauses for secure computation , Cryptology ePrint Archive, Report 2016

Open access
Fingerprint Recognition System Using Artificial Neural Network as Feature Extractor: Design and Performance Evaluation

REFERENCES [1] BARTŮNĚK, J. S.: Fingerprint Image Enhancement, Segmentation and Minutiae Detection , Doctoral Dissertation, Blekinge Institute of Technology (2016), 168 p. [2] BARTŮNĚK, J. S., J. S.—NILSSON, M.—NORDBERG, J.—CLAESSON, I.: Neural network based minutiae extraction from skeletonized fingerprints , in: TENCON 2006, IEEE Region 10 Conference (2006), 4 p. [3] CAPPELLI, R.: SFinGe: an approach to synthetic fingerprint generation , in: International Workshop on Biometric Technologies (2004), Calgary, Canada, 147–154. [4

Open access