Search Results

1 - 4 of 4 items :

  • Geometry and Topology x
Clear All
Algebra and local presentability: how algebraic are they? (A survey)

), 450-477. [9] J. Adámek, J. Rosický and E. M. Vitale, Algebraic theories, Cambridge Univ. Press 2011. [10] M. Artin, A. Grothendieck and J. L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, Springer-Verlag, Berlin 1972. [11] J. Beck, Distributive laws, Lecture Notes in Math. 80 (1969), 119-140. [12] C. Centazzo and E. M. Vitale, A duality relative to a limit doctrine, Theory Appl. Categ. 10 (2002), 486-497. [13] A. Day, Filter monads, continuous

Open access
Toeplitz Quantization for Non-commutating Symbol Spaces such as SUq(2)

-Bargmann space. Trans. Am. Math. Soc. 301 (1987) 813-829. [8] D. Borthwick, S. Klimek, A. Lesniewski, M. Rinaldi: Matrix Cartan superdomains, super Toeplitz operators, and quantization. J. Funct. Anal. 127 (1995) 456-510. arXiv: hep-th/9406050 [9] A. Böttcher and B. Silbermann: Analysis of Toeplitz Operators. Springer (2006). [10] J.-P. Gazeau: Coherent States in Quantum Physics. Wiley-VCH (2009). [11] B.C. Hall: Holomorphic methods in analysis and mathematical physics, First Summer School in Analysis and

Open access
Hilsum–Skandalis maps as Frobenius adjunctions with application to geometric morphisms

of `Poisson Geometry, Deformation Quantisation and Group Representations' London Math. Soc. Lecture Note Ser. 323, Cambridge University Press, Cambridge, (2005) 145-272. [Mr96] Mrcun, J. Stability and invariants of Hilsum{Skandalis maps, Ph.D. thesis, Utrecht University, (1996). [T10] Townsend, C.F. A representation theorem for geometric morphisms. Applied Categorical Structures. 18 (2010) 573-583. [T12] Townsend, C.F. Aspects of slice stability in Locale Theory Georgian Mathematical Journal. Vol. 19, Issue 2, (2012

Open access
Fractional Hermite-Hadmard inequalities for convex functions and applications

+1/n) n+0:5 , Amer. Math. Monthly, 117(3) (2010), 273-277. [8] M. A. Noor, M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, Trans. J. Math. Mech. 5(2), (2013), 129-136. [9] M. A. Noor, M. U. Awan, K. I. Noor, On some inequalities for relative semi-convex functions, J. Ineq. Appl. 2013, 2013:332. [10] M. A. Noor, K. I. Noor, M. U. Awan, Geometrically relative convex functions, Appl. Math. Inform. Sci, 8(2), (2014), 607-616. [11] M. A. Noor, K. I. Noor, M. U

Open access