Search Results

You are looking at 1 - 10 of 53 items for :

  • Porous Materials x
Clear All
Open access

Marek Kawa, Wojciech Puła and Michał Suska

References [1] EN 1990:2002. Eurocode: Basis of structural design. CEN, European Committee for Standardization, Brussels. [2] FENTON G.A., GRIFFITHS D.V., Bearing-capacity prediction of spatially random c φ soils, Canadian Geotechnical Journal, 2003, 40(1), 54-65. [3] FENTON G.A., GRIFFITHS D.V., Risk Assessment in Geotechnical Engineering, John Wiley & Sons, New York 2008. [4] FENTON G.A., VANMARCKE E.H., Simulation of random fields via local average subdivision, Journal of Engineering Mechanics

Open access

Adrian Różański and Maciej Sobótka

References [1] ABRAMOWITZ M., STEGUN I.A., Handbook of mathematical functions, Dover Publications, Inc., New York 1972. [2] ASTM D5334-05 Standard, Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure, 2005. [3] CARSLAW H.S., JAEGER J.C., Conduction of heat in solids, Second edition, Oxford, Clarendon Press, 1959. [4] DE VRIES D.A., Heat transfer in soils, [in:] Heat and Mass Transfer in the Biosphere, I. Transfer Processes in

Open access

Jolanta Anna Prusiel and Krzysztof Gierej

reference factor, C op 0.5 a) Load combination I – symmetrical horizontal pressure and surface friction in connection with combination of randomly applied local loads on each silo ring respectively ( Fig. 5a) , Figure 5 Values of components of bulk solid pressure on the wall of the silo with diameter d c =10 m and height H =25 m during emptying on large eccentricities e 0(2) = 0 . 375 d c : a) Combination I; b) Combination II. b) Load combination II – non-symmetrical pressure on the chamber perimeter, taking into account the

Open access

Anupam Bhandari

) = u ′ ( t ′ ) V 0 , t = ρ V 0 2 μ t ′ ,     G r = μ g β ( T w − T ∞ ) ρ V 0 3 , G m = μ g β ′ ( C w − C ∞ ) ρ V 0 3 $$\begin{matrix}U\left( t \right)=\frac{{u}'\left( {{t}'} \right)}{{{V}_{0}}},t=\frac{\rho V_{0}^{2}}{\mu }{t}',\,\,Gr=\frac{\mu g\beta \left( {{T}_{w}}-{{T}_{\infty }} \right)}{\rho V_{0}^{3}}, \\Gm=\frac{\mu g{\beta }'\left( {{C}_{w}}-{{C}_{\infty }} \right)}{\rho V_{0}^{3}} \\\end{matrix}$$ (10) M = σ B 0 2 μ ρ 2 V 0 2 ,     K = K ′ V 0 2 ρ 2 μ 2 ,           γ = K 1 μ ρ V 0 2 ,       S c = μ ρ D , φ = Q 0 μ ρ 2 C p V 0 2

Open access

Agnieszka Smaga

REFERENCES [1] B riaud J.-L., C hen H.-C., N urtjahyo Y., L i P., W ang J., Complex pier scour and contraction scour in cohesive soils , Transportation Research Board National Research Council. (NCHRP REPORT 24–15, 2003). [2] J acobs W., L e H ir P., V an K esteren W., C ann P., Erosion threshold of sand – mud mixtures , Continental Shelf Research, 2011, 31, 14–25. DOI: 10.1016/j.crs.2010.05.012. [3] M łynarek Z., Czynniki wpływające na opór stożka podczas statycznego sondowania gruntów spoistych , Poznań: Roczniki Akademii

Open access

Marek Kawa

, International Journal of Analytical and Numerical Methods in Geomechanics, 2010, 34(3), 221-247, DOI: 10.1002/nag.799. [4] JAEGER J.C., Shear failure of anisotropic rocks , Geological Magazine, 1960, 97(1), 65-72. [5] KAWA M., PIETRUSZCZAK S., SHIEH-BEYGI B., Limit states for brick masonry based on homogenization approach , International Journal of Solids and Structures, 2008, 45 (3-4), 998-1016, DOI: 10.1016/ j.ijsolstr.2007.09.015. [6] MILANI G., LOURENCO P.B., TRALLI A., Homogenised limit analysis of masonry walls, part I: failure surfaces; part II: structural

Open access

Dariusz Łydżba, Adrian Różański, Magdalena Rajczakowska and Damian Stefaniuk

References [1] MOHSENIN N.N., Thermal properties of foods and agricultural materials, Gordon and Breach, New York, 1980. [2] CARSLAW H.S., JAEGER J.C., Conduction of heat in solids, Clarendon Press, Oxford, 1959. [3] RICHE F., SCHNEEBELI M., Microstructural change around a needle probe to measure thermal conductivity of snow, Journal of Glaciology, 2010, Vol. 56, No. 199. [4] FONTANA A.J., VERITH J., IKEDIALA J., REYES J., WACKER B., Thermal properties of selected foods using dual needle heat

Open access

Sidali Denine, Noureddine Della, Muhammed Rawaz Dlawar, Feia Sadok, Jean Canou and Jean-Claude Dupla

triaxial tests of fiber-reinforced sand, Proceedings of the 4th Asian Regional Conference on Geosynthetics Shanghai, China, 2008. [12] CHEN X., ZHANG J., LI Z., Shear behaviour of a geogridreinforced coarse-grained soil based on large-scale triaxial tests, Geotextiles and Geomembranes, 2014, 42(4), 312-328, DOI: 10.1016/j.geotexmem.2014.05.004. [13] CONSOLI N.C., VENDRUSCOLO M.A., FONINI A., DALLA ROSA F., Fiber reinforcement effects on sand considering a wide cementation range, Geotextextiles and Geomembranes, 2009, 27 (3), 196-203, DOI

Open access

Łukasz Dominik Kaczmarek, Yufeng Zhao, Heinz Konietzky, Tomasz Wejrzanowski and Michał Maksimczuk

References [1] APPOLONI C.R., FERNANDES C.P., RODRIGUES C.R.O., X-ray microtomography study of a sandstone reservoir rock, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580(1), 629-632, DOI: 10.1016/ j.nima.2007.05.027. [2] BAKER D.R., MANCINI L., POLACCI M., HIGGINS M.D., GUALDA G.A.R., HILL R.J., RIVERS M.L., An introduction to the application of X-ray microtomography to the threedimensional study of igneous rocks, Lithos, 2016, 148, 262

Open access

Katarzyna Dołżyk-Szypcio

0.10 0.60 5.50 –0.15 3.5 0.00 1.50 –0.35 1.00 115 0.10 0.90 8.00 –0.65 4.2 0.05 1.60 –0.63 0.30 200 0.10 1.1 10.00 –0.10 1.9 0.00 1.80 –0.00 1.80 15 Saturated 0.15 0.40 10.50 0.25 –3.5 0.20 1.50 –0.05 1.30 200 0.12 1.15 10.00 0.05 2.2 –0.15 2.05 0.00 1.50 Table 4 Characteristic points and stress–dilatancy parameters for fouled railway ballast. σ c w ε a [%] Parameters α and β [kPa] [%] Y 1 Y