Search Results

You are looking at 1 - 10 of 236 items for :

  • Materials Sciences, other x
Clear All
Open access

Powder Metallurgy Progress

Journal of Science and Technology of Particle Materials

Open access

K. Vijaya Babu and V. Veeraiah

region [ 32 – 34 ]. The AC conductivity values calculated by the above formula at different temperatures are given in Table 2 . Fig. 7 Variation of AC conductivity with frequency at different temperatures of Li 0.5 La 0.5 Ti 1-x Zr x O 3 : (a) x = 0.05; (b) x = 0.1. Table 2 AC conductivity values for Li 0.5 La 0.5 Ti 1-x Zr x O 3 (x = 0.05 and 0.1) at different temperatures. Temperature [°C] Li 0.5 La 0.5 Ti 1-x Zr x O 3 (x = 0.05) Li 0.5 La 0.5 Ti 1-x Zr x O 3 (x = 0.1) 30 6.33 × 10 -4 1.01 × 10 -4 40 4.30 × 10 -4

Open access

Amol Naik, Jian Zhou, Chao Gao, Guizhen Liu and Lin Wang

] Y un N.J., H a H.W., J eong K.H., P ark H.Y., K im K., J. Power Sources , 160 (2006), 1361. [7] G abrisch H., W ilcox J.D., D oeff M.M., Electrochem. Solid. St. Lett. , 9 (7) (2006), A360. [8] C hung S.Y., B loking J.T., C hiang Y.M., Nat. Mater. , 1 (2002), 123. [9] Y amada A., C hung S.C., H inikuma K., J. Electrochem. Soc. , 148 (2001), A224. [10] G ibot P., C abanas M.C., L affont L., L evasseur S., C arlach P., H amelet S., T arascon J.M., M asquelier C., Nat. Mater. , 7 (2008), 741. [11] Z avalij P

Open access

R. Sobiestianskas, B. Vengalis, J. Banys, J. Devenson, A. Oginskis, V. Lisauskas and L. Dapkus

., Ora S. W., Liu J. M., Liu Z.G., Appl. Phys. Lett., 89 (2006), 052905. http://dx.doi.org/10.1063/1.2266992 [5] Yu B., Li M., Liu J., Guo D., Pei L., Zhao X., J. Appl. Phys., 41 (2008), 06503. [6] Takahashi K., Kida N., Tonouchi M., Phys. Rev. Lett., 96 (2006), 117402. http://dx.doi.org/10.1103/PhysRevLett.96.117402 [7] Chen J.-C., Wu J.-M., Appl. Phys. Lett., 91 (2007), 182903. http://dx.doi.org/10.1063/1.2798256 [8] Zhang X-Y., Song Q., Xu F., Ong C.K., Appl

Open access

Shuiping Li, Qisheng Wu, Chun Zhang, Huajun Zhu, Changsen Zhang, Xin Wang and Cancan Kong

References [1] ZHONG S.W., ZHAO Y.J., LIAN F., LI Y., HU Y., LI P.Z., MEI J., LIU Q.G., Trans. Nonferrous Met. Soc. China, 16 (2006), 137. [2] KIM C., AHN I., CHO K., J. Alloy. Compd., 449 (2008), 335. [3] HU G.R., DENG X.R., PENG Z.D., Rare Metal. Mater. Eng., 37 (2008), 1881. [4] SATHIYAMOORTHI R., SHAKKTHIVEL P., RAMALAKSHMI S., J. Power Sources, 171 (2007), 922. [5] CAO J.F., GUO C., ZOU H.M., J. Solid State Chem., 182 (2009), 555. [6] SONG M.Y., KWON I., SHIM

Open access

Bin Tang, Xing Zhang, Zixuan Fang, Qinglin Liu and Shuren Zhang

References [1] MEI Q.J., LI C.Y., GUO J.D., WU H.T., J. Alloy. Compd, 626 (2015), 217. [2] FREER R., AZOUGH F., J. Eur. Ceram. Soc., 28 (2008), 1433. [3] TANG B., FANG Z., LI H., LIU L., ZHANG S., J. Mater. Sci.-Mater. El., 26 (2014), 300. [4] KIM D.-W., KIM D.-Y., HONG K.S., J. Mater. Res, 15 (2000), 1331. [5] LIAO Q., LI L., DING X., Solid State Sci., 14 (2012), 1385. [6] PARK H.S., YOON K.H., KIM E.S., Mater. Chem. Phys, 79 (2003), 181. [7] KIM E

Open access

A. Sayari and L. El Mir

. Chem. Soc., 127 (2005), 5292. [6] SONG C., PAN S.N., LIU X.J., LI X. W., ZENG F., YAN W. S., HE B., PAN F., J. Phys.-Condens. Mat., 19 (2007), 176229. [7] PAN F., SONG C., LIU X., YANG Y., ZENG F., Mat. Sci. Eng. R, 62 (2008), 1. [8] ANDO K., SAITO H., JIN Z., FUKUMURA T., KAWASAKI M., MATSUMOTO Y., KOINUMA H., Appl. Phys. Lett., 78 (2001), 2700. [9] NORTON D.P., PEARTON S.J., HEBARD A.F., THEORDOROPOULOU N., BOATNER L.A., WILSON R. G., Appl. Phys. Lett., 82 (2003), 239. [10] JIN Z

Open access

Talat Zeeshan, Safia Anjum, Hina Iqbal and Rehana Zia

. Surf. Sci., 263 (2012), 100. [8] Tailhades P., Villette C., Rousset A., Kulkarni G., Kannan K., Rao C., Lenglet M., J. Solid State Chem., 141 (1998), 56. [9] Mathew T., Shiju N., Sreekumar K., Rao B.S., Gopinath C.S., J.Catal., 210 (2002), 405. [10] Abraham T., J. Ceram. Soc. Bull., 62 (1994), 73. [11] Cullity B.D., Elements Of X-Ray Diffraction, Addison Wesley, India, 1956. [12] Pecchal R.M., Madhuri W., Ramananhar R.N., Siva Kumar K.V., Murthy V.R., Ramakrishna R., J. Sci. Eng., 30

Open access

G. Papadopoulos

[1] G.J. PAPADOPOULOS, J. Non-Crystalline Solids 53 (2009) 1376. http://dx.doi.org/10.1016/j.jnoncrysol.2009.05.026 [2] R. TSU, L. ESAKI, Appl. Phys. Lett. 22 (1973) 562. http://dx.doi.org/10.1063/1.1654509 [3] D.K. FERRY, S.M. GOODNICK, Transport in Nanostructures, Cambridge: Cambridge University Press (1997). http://dx.doi.org/10.1017/CBO9780511626128 [4] P. SU, Z. CAO, K. CHEN, C. YIN, Q. SHEN, J. Phys. A: Math. Theor. 41 (2008) 465301. http://dx.doi.org/10

Open access

N. Murali, K. Vijaya babu, K. Ephraim babu and V. Veeraiah

, AC conductivity exhibits dispersion and increases with an increase in frequency and temperature [43] . The maximum AC conductivity of the synthesized sample is 1.03 × 10 −6 S/cm at 60 °C. Fig. 6 Variation of AC conductivity of LiNi 0.5 Mn 0.5 O 2 material as a function of frequency at different temperatures. The activation energies for AC conductivity at different temperature regions were obtained by measuring the slope of the curves and using the Arrhenius relationship: σ ac = σ 0 exp ( − E a k B T ) $${\sigma _{{\text{ac}}}} = {\sigma _0}\exp