, Compaction of Metal - Ceramic Powder Mixtures. Part. 1, ARA Journal of Sciences, old ISSN 0896-1018, in press. [13] I.N. Popescu, S. Zamfir, F. V.Anghelina, C.O. Rusǎnescu, Fabrication through P/M of ecological aluminum based composite materials. Part 1-Characterization and densification of mixture powders Proceedings of the 2nd Int. Conference on MEQAPS, Constantza, Sep 03,-05(2010) 200-205. [16] C. Ghiţă, I.N. Popescu, Experimental research and modelling of compaction behaviour of Al based composite with SiC particles, Comp Mater Sci, 64

### Ileana Nicoleta Popescu and Ruxandra Vidu

### Arvind Kumar, S. M. Abo-Dahab and Praveen Ailawalia

{array}{} \displaystyle \boldsymbol{u}=(u_1,0,u_3)\quad\boldsymbol{\phi}=(0,\phi_2,0),\quad\boldsymbol{E}=(E_1,0,E_3), \end{array}$$ (11) Also, it is convenient to define in equations (1) – (6) the following dimensionless quantities: ( x 1 ′ , x 3 ′ , u 1 ′ , u 3 ′ ) = 1 L 0 ( x 1 , x 3 , u 1 , u 3 ) $$\begin{array}{} \displaystyle (x_1^\prime,\,x_3^\prime,\,u_1^\prime,\,u_3^\prime)=\frac{1}{L_0}(x_1,\,x_3,\,u_1,\,u_3) \end{array}$$ (12) ϕ i ′ = ρ c 1 2 β 1 T 0 ϕ i , ϕ ⋆ ′ = ρ c 1 2 β 1 T 0 ϕ ⋆ , τ ′ = c 1 L 0 T 0 τ , t ′ c 1 L 0 t , t i j ′ = 1 ρ c 1 2 t i j , c

### Prashant Elango and K. Prakash Marimuthu

quadrilateral with global mesh size of 1 mm. The workpiece is meshed with C3D8R element which is an 8-node linear brick element with reduced integration and default hourglass control with global mesh size of 2 mm. A focused mesh is created near the drilling region with mesh seed of 0.5 mm. 6 Results Drill experimental values for reaction force were gathered from a published journal [ 3 ]. Numerical method results of reaction force were obtained at the tip of the drill bit. The average reaction force starting from entry of drill bit on workpiece till complete

### Krzysztof Kurc, Andrzej Burghardt, Dariusz Szybicki and Józef Giergiel

( 1 − s 2 ) H 1 0 0 1 $$\begin{array}{} \displaystyle C^{T}(q)=\\ \left[ \begin{array}{c } \frac{1}{2}r(1-{s}_{1})\sin\beta&\frac{1}{2}r(1-{s}_{2})\sin\beta\\ \frac{1}{2}r(1-{s}_{1})\sin\beta\cos\gamma&\frac{1}{2}r(1-{s}_{2})\sin\beta\cos\gamma\\ \frac{1}{2}r(1-{s}_{1})\sin\gamma&\frac{1}{2}r(1-{s}_{2})\sin\gamma\\ -\frac{r(1-s_1)}{H}&\frac{r(1-s_2)}{H}\\ 1&0\\ 0&1 \end{array}\right] \end{array}$$ (10) Next, we solved the right-side element of Maggie’s equation: C ( q ) Q = M n 1 + ( − 1 2 P u − 1 2 G sin γ − 1 2 F M − W t 1 ) ( 1 − s 1 ) r + M p r ( 1 − s

### Arvind Kumar and Devinder Singh

vector ϕ can be written mathematically as: u = ( u 1 , 0 , u 3 ) , ϕ = ( 0 , ϕ 2 , 0 ) w = ( w 1 , 0 , w 3 ) , $$\begin{array}{} {\boldsymbol u}=({{u}}_{1},0, u_{3})\, ,\quad {\boldsymbol \phi}=(0,\, \phi_{2},\, 0)\\{\boldsymbol w}=(w_{1},0,\, w_{3})\, , \end{array} $$ (14) We introduce the following non-dimensional quantities: u i ′ = u i L , x i ′ = x i L , t ′ = ω ⋆ t , ϕ ⋆ ′ = j 0 2 L 2 ϕ ⋆ , T ′ = T T 0 , t i j ′ = 1 υ T 0 t i j , ϕ i ′ = j 2 L 2 ϕ i , c 1 2 = λ + 2 μ + k ρ , m i j ⋆ = 1 L ν 1 T 0 m i j , q i j ′ = 1 L c 1 ν T 0 q i j , L = K ⋆ ρ c

### Azzeddine Belaziz and Mohamed Mazari

Observation of the formation of microstructural defects by SEM in HDPE [ 7 ] The technical, physical, and chemical specifications of the material studied are summarized in Table 2 . Table 2 Characteristics of HDPE Studied Density 930 kg/m 3 Molecular weight (Mw) 310,000 (g/mole) Crystallinity rate(Xc) 74% Fusion temperature ( T f ) 203°C Fluidity index 0.2−1; 4 g/10 (min) Black carbon 2−2.5% 2.2 Uniaxial tensile tests UT The uniaxial tensile tests UT were carried out on dumbbell

### Ileana Nicoleta Popescu and Ruxandra Vidu

References [1] R. W. Heckel, A normalized density-pressure Curve for Powder Compaction Trans. Metall. Soc. AIME, 224 (1962). 1074. [2]. I. H. Moon ,K. H. Kim, , Relationship between compacting pressure, green density, and green strength of copper powder compacts Powder Met., 27( 2) (1984). 80-84. [3] T. Çomoğlu, An Overview of Compaction Equations J. Fac. Pharm, Ankara, 36 (2) (2007)123-133. [4] C. Cazotti, J.L.A. Oliveira, J.B. Fogagnolo, , Efeito da Adição de Partículas de Al2O3 sobre a

### Debajyoti R. Chowdhury, Nathuram Chakraborty and Swapan C. Sarkar

-phase four cable mains, 50 Hz 380V Operating pressure of refrigerant 25 atm. Cooling liquid temperature +15°C Ambient air temperature +20°C Ambient air pressure 760 mm of Hg 2.2 Methodology of fabrication The cryogenic condenser development is one of the most critical components of the Reverse Stirling Cycle based liquefier. The condenser component is fabricated from a copper bar. The fabricated condenser has 160 slots of 0.5 mm length and depth of 56 mm, which is maintained within a 70 mm diameter on the inner side. Outer

### Puja Basu Chaudhuri, Anirban Mitra and Sarmila Sahoo

are placed concentrically on the shell surface. The stiffeners are placed along the cutout periphery and extended up to the edge of the shell. The material and geometric properties of the shells are a / b = 1, a / h = 100, a ′/ b ′ = 1, a ′/ a = 0.2, c / a = 0.2, E 11 / E 22 = 25, G 23 = 0.2 E 22 , G 13 = G 12 = 0.5 E 22 , ν 12 = ν 21 = 0.25, and p = 100 N-s 2 /m 4 unless otherwise specified. Seven laminated stacking sequences, namely, antisymmetric angle-ply (0/−0) 10 , (15/−15) 10 , (30/−30) 10 , (45/−45) 10 , (60/−60) 10 , (75/−75) 10

### T. Deepan Bharathi Kannan, B. Suresh Kumar, G. Rajesh Kannan, M. Umar and Mohammad Chand Khan

.17 6 350 0.038 0.033333 0.193333 1.91 7 350 0.038 0.03 0.25 3 8 350 0.203 0.106667 0.716667 2.88 9 350 0.203 0.146667 0.54 2.07 10 540 0.203 0.366667 0.356667 3.01 11 540 0.038 0.023333 0.426667 1.9 12 540 0.076 0.083333 0.573333 1.89 13 540 0.076 0.056667 0.503333 3.43 14 270 0.076 0.106667 0.146667 3.05 15 270 0.076 0.133333 0.546667 1.79 16 270 0.038 0.12 0.256667 1.61 17 270 0.203 0