Search Results

You are looking at 1 - 10 of 39 items for :

  • Nuclear Chemistry x
Clear All
Open access

Nukleonika

The Journal of Instytut Chemii i Techniki Jadrowej

Open access

Lucyna Samek, Zdzislaw Stegowski and Leszek Furman

References 1. Thurston, G. D., & Spengler, J. D. (1985). A quantitative assessment of source contributions to inhalable particulate matter pollution in Metropolitan Boston. Atmos. Environ ., 19 , 9–25. 2. Thurston, G. D., & Spengler, J. D. (1985). A multivariate assessment of meteorological influences on inhalable particle source impacts. J. Clim. Appl. Meteorol. , 24 , 1245–1256. 3. Song, Y., Xie, S., Zhang, Y., Zeng, L., Salmon, L. G., & Zheng, M. (2006). Source apportionment of PM2.5 in Beijing using Principal Component Analysis

Open access

Michael A. Bromley and Colin Boxall

processes for advanced fuel cycles. In ATALANTE 2008, May 19-22. Montpellier. 4. Albery, W. J., Burke, J. F., Leffl er, E. B., & Hadgraft, J. (1976). Interfacial transfer studied with a rotating diffusion cell. J. Chem. Soc. Faraday Trans. 1, 72, 1618-1626. DOI: 10.1039/f19767201618. 5. Modolo, G., Asp, H., Schreinemachers, C., & Vijgen, H. (2007). Development of a TODGA based process for partitioning of actinides from a PUREX raffinate Part I: Batch extraction optimization studies and stability tests. Solvent Extr. Ion Exch., 25, 703

Open access

Henrietta Nichipor, Yongxia Sun and Andrzej G. Chmielewski

References 1. Chmielewski, A. G., Licki, J., Pawelec, A., Tymiński, B., & Zimek, Z. (2004). Operational experience of the industrial plant for electron beam fl ue gas treatment. Radiat. Phys. Chem., 71(1/2), 441-444. DOI: 10.1016/j.radphyschem.2004.03.020. 2. Sun, Y., Zwolińska, E., & Chmielewski, A. G. (2016). Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review. Crit. Rev. Environ. Sci. Technol., 46(2), 119-142. DOI: 10.1080/10643389.2015.1063334. 3. Minachev, X. M

Open access

Bożena Malesa, Anna Antolak-Dudka, Dariusz Oleszak and Tomasz Pikula

Ochronie Środowiska , 2, 16–19. (in Polish). 9. Goossenes, D. J., Weekes, C. J., Avdeev, M., & Hutchison, W. D. (2013). Crystal and magnetic structure of (1-x)BiFeO 3 -xSrTiO 3 (x=0.2, 0.3, 0.4, and 0.8). J. Solid State Chem ., 207 , 111–116. DOI: 10.1016/j.jssc2013.09.024. 10. Rachinger, W. A. (1948). A correction for the α 1 α 2 doublet in the measurement of widths of X-ray diffraction lines. J. Sci. Instrum ., 25 , 254–260. DOI: 10.1088/0950-7671/25/7/125. 11. Kowal, K., Jartych, E., Guzdek, P., Stoch, P., Wodecka-Duś, B., Lisińska-Czekaj, A., & Czekaj, D

Open access

Jacek Szczerba, Edyta Śnieżek, Paweł Stoch, Ryszard Prorok and Ilona Jastrzębska

CaZrO 3 . J. Eur. Ceram. Soc ., 32 (3), 665–670. DOI: 10.1016/j.jeurceramsoc.2011.10.011. 4. Prasanth, C. S., Padma Kumar, H., Pazhani, R., Solomon, S., & Thomas, J. K. (2008). Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO 3 ceramics. J. Alloy. Compd ., 464 (1/2), 306–309. DOI: 10.1016/j.jallcom.2007.09.098. 5. Pollet, M., Marinel, S., & Desgardin, G. (2004). CaZrO 3 , a Ni-co-sinterable dielectric material for base metal-multilayer ceramic capacitor applications. J. Eur. Ceram. Soc ., 24 (1), 119–127. DOI: 10

Open access

Tadeusz Szumiata, Małgorzata Gzik-Szumiata, Katarzyna Brzózka, Bogumił Górka, Michał Gawroński, Ryszard Świetlik and Marzena Trojanowska

, K., Gawroński, M., Gzik-Szumiata, M., Javed, A., Morley, N. A., & Gibbs, M. R. J. (2013). Mössbauer study of vacuum annealed Fe 100− x Ga x (10 ≤ x ≤ 35) thin films. Nukleonika , 58 , 25–28. 9. Taneja, S. P. (2004). Mössbauer studies of thermal power plant coal and fly ash. Hyperfine Interact ., 153 , 83–90. 10.1023/B:HYPE.0000024715.55347.fe. 10. Vandenberghe, R. E., de Resende, V. G., & De Grave, E. (2009). Mössbauer effect study of fly and bottom ashes from an electric generating plant. Hyperfine Interact ., 191 , 11–16. DOI: 10.1007/s10751

Open access

Ewa Szymańska, Łukasz Syrocki, Katarzyna Słabkowska and Marek Polasik

, J. W. (2013). Tungsten L transition line shapes and energy shifts resulting from ionization in warm dense matter. High Energy Density Phys., 9, 354-362. DOI: 10.1016/j.hedp.2013.03.005. 7. Pereira, N. R., Weber, B. V., Phipps, D. G., Schumer, J. W., Seely, J. F., Carroll, J. J., VanHoy, J. R., Słabkowska, K., Polasik, M., Szymańska, E., & Rzadkiewicz, J. (2013). High-resolution (~0.05%) red shift of a ~60 keV Kα line upon ionization. High Energy Density Phys., 9, 500-504. DOI: 10.1016/j.hedp.2013.03.011. 8. Słabkowska, K. (2013

Open access

Jesmin Aktar, Zahid Hasan, Tahmina Afroz, Harun-or-Rashid and Kamruzzaman Pramanik

). Preparation and characterization of chitin and chitosan – a review. J. Aquat. Food Prod. Technol. , 4 (2), 27–52. http://dx.doi.org/10.1300/J030v04n02_03 . 8. Tolaimate, A., Desbrieres, J., Rhazi, M., Alague, A., Vincendon, M., & Vottero, P. (2000). On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer , 41 , 2463–2469. DOI: 10.1016/S0032-3861(99)00400-0. 9. Liu, N., Chen, X. g., Park, H. J., Liu, C. G., Liu, S. C., Meng, X. H., & Yu, L. J. (2006). Effect of MW and concentration of chitosan

Open access

Stefania Baccaro and Alessia Cemmi

. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. , 824 , 678–680. http://dx.doi.org/10.1016/j.nima.2015.11.042 . 6. Baccaro, S. (1996). Radiation-induced effects in ethylene-propylene copolymer with antioxidant. In R. L. Clough & S. W. Shalaby (Eds.), Irradiation of polymers. Fundamental and technological applications (Chapter 25, pp. 323–339). ACS Symp. Series, Vol. 620. DOI: 10.1021/bk-1995-0619. 7. Nikl, M., Bohácek, P., Mihóková, E., Rosa, J., Martini, M., Vedda, A., Fabeni, P., Pazzi, G. P., Laguta, V., Kobayashi, M., Ishii