Search Results

1 - 9 of 9 items :

  • "temporality" x
  • Engineering x
  • Production Technology x
Clear All

JL. Sudden cardiac death with apparently normal heart. Circulation. 2000 Aug 8;102(6):649-54. D. Dey, V.Y. Cheng, P.J. Slomka, R. Nakazato, A. Ramesh, S. Gurudevan, G. Germano, D.S.: Automated 3-dimensional quantification of noncalcified and calcified coronary plaque from coronary CT angiography, Journal of cardiovascular computed tomography 3 (6), 372-382 Flohr T.G., Leng S., Yu L., Aiimendinger T., Bruder H., Petersilka M., Eusemann C.D., Stierstorfer K., Schmidt B., McCollough C.H.: Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution

Abstract

In this paper is presented a method to represent the events extracted from images sequences and the query language used for events detection. Using an object oriented model the spatial and temporal relationships between salient objects and also between events are stored and queried. This works aims to unify the storing and querying phases for video events processing. The object oriented language syntax used for events processing allow the instantiation of the indexes classes in order to improve the accuracy of the query results. The experiments were performed on images sequences provided from sport domain and it shows the reliability and the robustness of the proposed language. To extend the language will be added a specific syntax for constructing the templates for abnormal events and for detection of the incidents as the final goal of the research.

Otolaryngology and Head & Neck Survey, Madras Medical College, Chennai, Vol.49, pag. 47-50, (1997); [5]. Lengagne T, ”Traffic noise effects communication behaviour in a breeding anuran, Hyla arborea”, Journal of Biological Conservation, Lyon, Vol. 141, pag. 2023-2031, (2008); [6]. Macoveanu, M., Politici si strategii de mediu”, Ed. Ecozone, Iasi, (2006); [7]. Majumder A K, Murthy V K, , ”Spatial and Temporal Variation of Ambient PM: A case study of Banepa Valley, Nepal”, Journal of Science, Engineering and Technology, Nepal, Vol. 8, No.1, pag. 23-32, (2012); [8]. Zaharia C

Abstract

Performance improvement is taken as the primary goal in the asset management. Advanced data analysis is needed to efficiently integrate condition monitoring data into the operation and maintenance. Intelligent stress and condition indices have been developed for control and condition monitoring by combining generalized norms with efficient nonlinear scaling. These nonlinear scaling methodologies can also be used to handle performance measures used for management since management oriented indicators can be presented in the same scale as intelligent condition and stress indices. Performance indicators are responses of the process, machine or system to the stress contributions analyzed from process and condition monitoring data. Scaled values are directly used in intelligent temporal analysis to calculate fluctuations and trends. All these methodologies can be used in prognostics and fatigue prediction. The meanings of the variables are beneficial in extracting expert knowledge and representing information in natural language. The idea of dividing the problems into the variable specific meanings and the directions of interactions provides various improvements for performance monitoring and decision making. The integrated temporal analysis and uncertainty processing facilitates the efficient use of domain expertise. Measurements can be monitored with generalized statistical process control (GSPC) based on the same scaling functions.

). Impact of the emissions of international sea traffic on airborne deposition to the Baltic Sea and concentrations at the coastline, Oceanologia, Volume 56 Issue 2, pp. 349-372. IMO. (2015). Guidance for the development of a Ship Efficiency, London. Johansson L., Jalkanen J.P. and Kiukkonen J. (2017). Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution, Atmospheric Environment, vol. 167, pp 403-415. Rajewski P., Behrendt C. and Klyus O. (2013). Clean Shipping for Small Fishing Boat on Baltic Sea. Conference DIAGO® 2013, Ostrava

Zarządzanie przedsiębiorstwem wodociągowym. Uwarunkowania funkcjonowania i współczesne koncepcje zarządzania . P. Chudziński, Ed. Warszawa: PWE, 2018, pp.185-202. [4] R. Brouwer, C.M. Ordens, R. Pinto, M.T. Condesso de Melo. (2018, May). „Economic valuation of groundwater protection using a groundwater quality ladder based on chemical threshold levels”. Ecological Indicators. Vol. 88, pp. 292-304. DOI: 10.1016/j.ecolind.2018.01.041. [5] D. Carstens, R. Armer. (2019, Feb.). „Spatio-temporal analysis of urban changes and surface water quality”. Journal of Hydrology. Vol

., Perego, A., Salvadori, G., & Tumino, A. (2017). A comprehensive view of intelligent transport systems for urban smart mobility. International Journal of Logistics Research and Applications A Leading Journal of Supply Chain Management , 20 , 39-52. van Mead, N. (2017). Uber for bikes: how “dockless” cycles flooded China – and are heading overseas. The Guardian . Retrieved from https://www.theguardian.com/cities/2017/mar/22/bike-wars-docklesschina-millions-bicycles-hangzhou Min, W., & Wynter, L. (2011). Real-time road traffic prediction with spatio-temporal

impulse signals on biological pests in the soil. MOTROL. Commission of motorization and energetics in agriculture: Polish Academy of sciences . Vol. 17, №1 . 45-50. Chernyshev, S.L. (2001). Spatio-temporal analysis of the characteristics of the ultrawideband antenna. Chernyshev S. L., Vylenskyy A. R. Problems of diffraction and propagation of electromagnetic waves: interdepartmental collection of scientific papers . MIPT. p. 113-120. Ymmoreev, I.Y. (2001). Radiation of ultrawideband signals. Ymmoreev Y. Y., Synyavyn A. N. Antennas. Issue. 1 , p. 8-16. Terenov, D

16949, 2016. Norma pro systém managementu kvality v automobilovém průmyslu , Česká společnost pro jakost, z.s. Praha, Česká republika. Jarošová, E., 2018. Destructive R&R Study – Evaluation Problems, 17 th Conference on Applied Mathematics APLIMAT 2018, Bratislava, 535-544. Kappele, W.D., Raffaldi, J., 2010. Gage R&R for Destructive Measurement Systems, Quality Magazine, 5, 32-34. Meulen, F., Koning, H., De Mast, J., 2009. Nonrepetable GRR Studies Assuming Temporal or Patterned Object Variation, Journal of Quality Technology, 4, 41. Mikulová, P., Plura, J